# Calculus

Q.a.Find the stationary points on the graph of y=12x+3x^2-2x^3 and sketch the curve.
b.How does your sketch show that the equation 12x+3x^2-2x^3 =0 has exactly three real roots.
c.Use your graph to show that the eequation 12x+3x^2-2x^3 = -5 also has exactly three real roots.
d.For what range of values of k does the equation 12x+3x^2-2x^3 = k have i)exactly three real roots ii)only one real root?

1. 👍
2. 👎
3. 👁
1. a) y=12x+3x^2-2x^3
y' = 12+6x-6x^2 = 6(2-x)(1+x)

b) y(-3) > 0 and y(-1) < 0 and y(0) = 0 and y(1) > 0 and y(4) < 0
c) the line y = -5 also crosses the graph at three places

d) i) If the two stationary points are a min at y=a and a max at y=b, then a < k < b
ii) k < a or k > b

1. 👍
2. 👎
👤
oobleck
2. Can you write the answer of only d)

1. 👍
2. 👎

## Similar Questions

1. ### math

If two quantities vary directly, which must be true of a graph showing the relationship between them? Select all that apply. A. The graph is a curve. B. The points on the graph are connected. C. The graph increases from left to

2. ### Calculus!! HELP!!

1) The sides of the triangle shown increase in such a way that (dz/dt=1) and (dx/dt=(3dy/dx)) At the instant when x = 12 and y = 5, what is the value of dx/dt? 2) Let f(x) = x^3 − 4. Which of these is the equation for the normal

3. ### Calculus

a) Estimate the area under the graph of f(x)=7+4x^2 from x=-1 to x=2 using three rectangles and right endpoints. R3= ???? Then improve your estimate by using six rectangles. R6= ????? Sketch the curve and the approximating

4. ### Maths

The sketch shows a curve with equation y=ab^x where a and b are constants and b>0. The curve passes through the points (0,3) and (2,12). Calculate the value of a and b. Thank you.

1. ### Statistics

(GRAPH) Sketch a normal curve that has a mean of 15 and a standard deviation of 4. On the same x-axis, sketch another normal curve that has a mean of 25 and a standard deviation of 4. Describe the two normal curves.

2. ### Calculus

Consider the curve defined by y + cosy = x +1 for 0 =< y =< 2pi.... a. Find dy/dx in terms of y. *I got 1/(y-siny) but I feel like that's wrong. b. Write an equation for each vertical tangent to the curve. c. find d^2y/dx^2 in

3. ### Calculus

A particle moves at varying velocity along a line and s=f(t) represents the particle's distance from a point as a function of time, t. Sketch a possible graph for f if the average velocity of the particle between t=2 and t=6 is

4. ### calculus

To get a better look at the graph, you can click on it. Find a function of the form f(x)=A sin(B[x−C])+D whose graph is the sine wave shown above. The curve goes through the points (−5,0) and (1,0). If needed, you can enter

1. ### maths

Find the two stationary points on the curve when y = 2x/x^2 + 1

2. ### analytic geometry

1. Given the parabola defined by y^2 =-12x, find the coordinates of the focus,the length of the latus rectum and the coordinates of its endpoints.Find also the equation of the directrix. Sketch the curve. 2. Find the eccentricity

3. ### calculus

Find the points on the curve y = 2x^3 + 3x^2 - 12x + 1 where the tangent is horizontal

4. ### pre cal

What is the center of the conic whose equation is x^2 + 2y^2 - 6x + 8y = 0 2.Which one of the following equations represents a hyperbola? (5 points) A) 3x^2 + y^2 + 12x - 7 = 0 B) 3x^2 + 3y^2 + 12x - 7 = 0 C) 3x^2 + y + 12x - 7 =