(Sec(theta)*sin(theta))/(tan(theta)+cot(theta))=sin^2(theta)

Really?

Just cancel the cosx , top and bottom

sec θ ∙ sin θ / ( tan θ + cot θ) =

( 1 / cos θ ) ∙ sin (θ) / ( sin θ / cos θ + cos θ / sin θ )n=

( 1 / cos θ ) ∙ sin θ / [ ( sin θ ∙ sin θ + cos θ ∙ cos θ ) / ( cosθ ∙ sin θ ) ] =

( 1 / cos θ ) ∙ sin θ / [ ( sin² θ + cos² θ ) / ( cosθ ∙ sin θ ) ] =

( 1 / cos θ ) ∙ sin θ / [ 1 / ( cosθ ∙ sin θ ) ] =

( 1 / cos θ ) ∙ sin θ ∙ 1 / [ 1 / ( cosθ ∙ sin θ ) ] =

_______________________________
Remark:

1 / ( 1 / x ) = x

that's why

1 / [ 1 / ( cosθ ∙ sin θ ) ] = cosθ ∙ sin θ
______________________________

( 1 / cos θ ) ∙ sin θ ∙ cosθ ∙ sin θ =

( 1 / cos θ ) ∙ cosθ ∙ sin θ ∙ sin θ =

( cos θ / cos θ ) ∙ sin θ ∙ sin θ =

1 ∙ sin² θ = sin² θ

To explain how to prove the equation (sec(theta) * sin(theta))/(tan(theta) + cot(theta)) = sin^2(theta), we need to simplify the left-hand side (LHS) and the right-hand side (RHS) and then show that they are equal.

Let's start with the LHS:
(sec(theta) * sin(theta))/(tan(theta) + cot(theta))

Now, let's rewrite sec(theta), tan(theta), and cot(theta) in terms of sin(theta) and cos(theta):

sec(theta) = 1/cos(theta)
tan(theta) = sin(theta)/cos(theta)
cot(theta) = cos(theta)/sin(theta)

Substituting these values, we have:

(1/cos(theta) * sin(theta))/(sin(theta)/cos(theta) + cos(theta)/sin(theta))

Next, let's simplify the denominator by finding a common denominator:

(sin(theta)/cos(theta) + cos(theta)/sin(theta)) = (sin^2(theta) + cos^2(theta))/(cos(theta) * sin(theta)/cos(theta))

Since sin^2(theta) + cos^2(theta) = 1, we have:

(1)/(cos(theta) * sin(theta)/cos(theta))

Now, dividing by a fraction is the same as multiplying by its reciprocal, so we can rewrite the expression as:

1 * (cos(theta)/cos(theta))/(cos(theta) * sin(theta))

The cos(theta) terms in the numerator and denominator cancel out:

1 * 1/(cos(theta) * sin(theta))

So, the simplified LHS is:

1/(cos(theta) * sin(theta))

Now, let's simplify the RHS:

sin^2(theta)

Since sin^2(theta) is already simplified, we don't need to do any further calculations.

Comparing the simplified LHS and RHS, we can see that they are indeed equal:

1/(cos(theta) * sin(theta)) = sin^2(theta)

Hence, we have proved that (sec(theta) * sin(theta))/(tan(theta) + cot(theta)) = sin^2(theta).

I am going to use x for theta

(Secx*sinx)/(tanx+cotx)=sin^2 x

LS = (1/cosx * sinx)/(sinx/cosx + cosx/sinx)
= (sinx/cosx)/((sin^2 x + cos^2 x)/(sinxcosx))
= (sinx/cosx)(sinxcosx/1)
= can you see it happening?

no,