Simplify the expression (tanθ+cotθ)^2 - (tanθ-cotθ)^2 using algebra and trigonometric identities.

(tanθ+cotθ)^2 - (tanθ-cotθ)^2

= (tan^2θ + 2 + cot^2θ) - (tan^2θ - 2 + cot^2θ)
= 4
because tanθ cotθ = 1

To simplify the given expression, we'll use the algebraic identity:

(a + b)^2 = a^2 + 2ab + b^2

Let's rewrite the given expression using this identity:

(tanθ + cotθ)^2 - (tanθ - cotθ)^2

Using the identity, the expression becomes:

(tanθ)^2 + 2(tanθ)(cotθ) + (cotθ)^2 - [(tanθ)^2 - 2(tanθ)(cotθ) + (cotθ)^2]

Now let's simplify further. Recall the trigonometric identity:

tanθ = sinθ/cosθ,
cotθ = cosθ/sinθ

Replace (tanθ)(cotθ) using these identities:

(tanθ)^2 + 2(tanθ)(cotθ) + (cotθ)^2
= (sinθ/cosθ)^2 + 2(sinθ/cosθ)(cosθ/sinθ) + (cosθ/sinθ)^2
= sin^2θ/cos^2θ + 2cosθsinθ/sinθcosθ + cos^2θ/sin^2θ

Using the trigonometric identity:

sin^2θ + cos^2θ = 1

We can substitute cos^2θ with 1 - sin^2θ:

= sin^2θ/cos^2θ + 2cosθsinθ/sinθcosθ + (1 - sin^2θ)/sin^2θ

Now let's simplify each term:

sin^2θ/cos^2θ = tan^2θ,
2cosθsinθ/sinθcosθ = 2,
(1 - sin^2θ)/sin^2θ = 1/sin^2θ - 1

Now substituting these simplified terms back into the expression:

tan^2θ + 2 - 1/sin^2θ + 1

Combining the terms gives us the simplified expression:

tan^2θ + 1/sin^2θ + 3

So, the simplified expression is tan^2θ + 1/sin^2θ + 3.