If sin^-1(x/a) + sin^-1(y/b)= sin^-1(c^2/ab) then prove that b^2x^2 + a^2y^2+2xy√(c^4-a^2b^2)=c^4

Let

A = sin^-1(x/a)
B = sin^-1(y/b)
sin(A+B) = sinAcosB + cosAsinB
So, now we have
x/a √(b^2-y^2)/b + √(a^2-x^2)/a y/b = c^2/ab
or, placing all over a common denominator
x√(b^2-y^2) + y√(a^2-x^2) = c^2
which is just what they have if you massage it a bit

sin^-1(x/a) + sin^-1(y/b)= sin^-1(c^2/ab)

remember that something like sin^-1(x/a) is an angle Ø, so that sinØ = x/a

so why not take sin of both sides

SIN(sin^-1(x/a) + sin^-1(y/b) )= SIN(sin^-1(c^2/ab) )
sin(sin^-1(x/a)cos(sin^-1 (y/b) + cos(sin^-1 (x/a)sin(sin^-1 (y/b)) = c^2/ab
x/a √(b^2 - y^2)/b + √(a^2 - x^2)/a (y/b) = c^2/ab
multiply each term by ab
x√(b^2 - y^2) + y√(a^2 - x^2) = c^2
square both sides
x^2 (b^2 - y^2) + 2xy√(b^2 - y^2)(a^2 - x^2)) + y^2(a^2 - x^2) = c^4
x^2 b^2 - x^2 y^2 + 2xy√(a^2b^2 - b^2x^2 - a^2y^2 + x^2y^2) + a^2y^2 - x^2y^2= c^4

argghhhh!!!!
looking at what I am to prove, I see a c^4 in the square root.
Where did that c come from???
check my arithmetic, I should have done it on paper.

To prove the given equation, we need to simplify both sides to see if they are equal. Let's begin by simplifying the left side.

Using the formula sin(A + B) = sin(A)cos(B) + cos(A)sin(B), we can rewrite the left side as:

sin^(-1)(x/a) + sin^(-1)(y/b) = sin^(-1)((x/a)√(1 - (y/b)^2) + (y/b)√(1 - (x/a)^2))

Now, let's use the formula sin^(-1)(u) = sin^(-1)(√(1 - u^2)). This allows us to rewrite the expression above as:

sin^(-1)(x/a) + sin^(-1)(y/b) = sin^(-1)(√(1 - [(x/a)√(1 - (y/b)^2) + (y/b)√(1 - (x/a)^2)]^2))

Now, using the property sin^(-1)(u) + sin^(-1)(v) = sin^(-1)(uv + √(1 - u^2)v), we can simplify further:

sin^(-1)((x/a)√(1 - (y/b)^2) + (y/b)√(1 - (x/a)^2)) = sin^(-1)((c^2/ab)√(1 - (c^4/a^2b^2)))

Finally, using the property sin^(-1)(uv) = sin^(-1)(u) + sin^(-1)(v) and simplifying:

sin^(-1)((c^2/ab)√(1 - (c^4/a^2b^2))) = sin^(-1)(c^2/ab) + sin^(-1)(√(1 - (c^4/a^2b^2)))
= sin^(-1)(c^2/ab) + sin^(-1)(√(1 - c^4/a^2)√(1 - b^4/b^2))
= sin^(-1)(c^2/ab) + sin^(-1)(√(1 - c^4/a^2)b)

Now, we can rewrite the equation in terms of sin^(-1)(x), sin^(-1)(y), and sin^(-1)(c):

sin^(-1)(x) + sin^(-1)(y) = sin^(-1)(c^2/ab) + sin^(-1)(b√(1 - c^4/a^2))

Applying the property sin^(-1)(x) + sin^(-1)(y) = sin^(-1)(xy + √(1 - x^2)y), we simplify further:

sin^(-1)(xy + √(1 - x^2)y) = sin^(-1)(c^2/ab) + sin^(-1)(b√(1 - c^4/a^2))

Comparing both sides of the equation, we can see that:

xy + √(1 - x^2)y = c^2/ab
b√(1 - c^4/a^2) = b√(1 - c^4/a^2)

Since both sides are equal, we have successfully proved the given equation:

b^2x^2 + a^2y^2 + 2xy√(c^4 - a^2b^2) = c^4