chemistry

ideal gas .450 mole initial pressure 16 atm and 290 K expands isothermally to a final pressure 1 atm. find work , if expansion is against a vacuum, a constant external pressure of 1 atm and reviersibly

asked by kat

  1. W(isothermal) = nRT*ln(V2/V1)
    or
    W(isothermal) = nRT*ln(P1/P2)

    See also:
    http://www.diracdelta.co.uk/science/source/i/s/isothermal%20expansion/source.html

    posted by GK

Respond to this Question

First Name

Your Answer

Similar Questions

  1. Chemistry

    1) 0.19 litre of an ideal monatomic gas (Cv,m = 3R/2) initially at 83 °C and 47 atm pressure undergo an expansion against a constant external pressure of 1.19 atm, and do 2.3 kJ of work. The final pressure of the gas is 1.19 atm.
  2. Physical Chemistry

    Calculate the work, w, (in J) when 0.6 litre of an ideal gas at an initial pressure of 91.5 atm is expanded isothermally to a final pressure of 2.15 atm against a constant external pressure of 2.15 atm. I got -130.71 J, but
  3. physical biochemistry

    One mole of an ideal monatomic gas initially at 300 K is expanded from an initial pressure of 10 atm to a final pressure of 1 atm. Calculate ��E, q, w, ��H, and the final temperature T2 for this
  4. Chemistry

    You have 1L of an ideal gas at 0 degree celsius and 10 atm pressure. You allow the gas to expand against a constant external pressure of 1 atm, while the temperature remains constant. Assuming, 101.3 J/liter-atm, find q,w,delta E,
  5. Chemistry

    Consider an ideal gas encloesd in a 1.00 L container at an internal pressure of 10.0 atm. Calculate the work, w, if the gas expands against a constant external pressure of 1.00 atm to a final volume of 20.0 L. w = ____ J now
  6. chem

    If an ideal gas is allowed to expand into a vacuum, this means that the external pressure is 0. This doesn't affect the internal pressure though, correct? For example: I have a problem in which one mole of an ideal gas at 300. K
  7. Chemistry

    Consider an ideal gas encloesd in a 1.00 L container at an internal pressure of 10.0 atm. Calculate the work, w, if the gas expands against a constant external pressure of 1.00 atm to a final volume of 20.0 L. w = ____ J now
  8. chemistry

    An ideal gas is allowed to expand isothermally from 2.00 L at 5.00 atm in two steps: a) against a constant external pressure of 3.00 atm, followed by b) against a constant external pressure of 2.00 atm. Calculate q and w. (101.33
  9. Chemistry

    1 mol of an ideal gas expands under isothermal conditions (T=298.15K). The initial pressure and volume is 2.00 atm and 1.00L respectively, and the final pressure is 1.00 atm. Find the expansion work. The answer is w = -101.325 J.
  10. Urgent Chemistry!!

    1 mol of an ideal gas expands under isothermal conditions (T=298.15K). The initial pressure and volume is 2.00 atm and 1.00L respectively, and the final pressure is 1.00 atm. Find the expansion work. The answer is w = -101.325 J.

More Similar Questions