# Physics please check

Three moles of an ideal monatomic gas are at a temperature of 345 K. Then, 2531 J of heat are added to the gas, and 1101 J of work are done on it. What is the final temperature of the gas?

delta U= 3/2nR(T final -T initial)

(2531J - 1101J) = 3/2(3.0mol)(8.31)(T final - 345K)

1430J = 37.395(T final - 345K)

1430J/ 37.395 = T final - 345K

38.24 + 345K = T final

383.2404K = T final

This answer is incorrect. Please explan to me where I went wrong.

if work was done on it, wouldn't the internal energy go up, and therefore the work ADDED to the heat added? Maybe I don't understand your statement.

1. 👍 0
2. 👎 0
3. 👁 709
asked by Mary
1. since work is done on the gas, the value of work has to be negative. so you would do 2531 + 1101 instead

1. 👍 0
2. 👎 0
posted by kat

## Similar Questions

1. ### Physics please check repost

Three moles of an ideal monatomic gas are at a temperature of 345 K. Then, 2531 J of heat are added to the gas, and 1101 J of work are done on it. What is the final temperature of the gas? delta U= 3/2nR(T final -T initial) (2531J

asked by Mary on April 15, 2007
2. ### Physics please check

Three moles of an ideal monatomic gas are at a temperature of 345 K. Then, 2531 J of heat are added to the gas, and 1101 J of work are done on it. What is the final temperature of the gas? delta U= 3/2nR(T final -T initial) (2531J

asked by Mary on April 15, 2007
3. ### Physics

A tank with a constant volume of 3.44 m3 contains 14 moles of a monatomic ideal gas. The gas is initially at a temperature of 300 K. An electric heater is used to transfer 52600 J of energy into the gas. It may help you to recall

asked by Leul on February 9, 2016
4. ### Physics repost please check

Three moles of an ideal monatomic gas are at a temperature of 345 K. Then, 2531 J of heat are added to the gas, and 1101 J of work are done on it. What is the final temperature of the gas? delta U= 3/2nR(T final -T initial) (2531J

asked by Mary on April 16, 2007
5. ### Physics

A cylinder with a movable piston contains 14 moles of a monatomic ideal gas at a pressure of 2.26 × 105 Pa. The gas is initially at a temperature of 300 K. An electric heater adds 52600 J of energy into the gas while the piston

asked by Billy on February 9, 2016
6. ### Physics

Suppose that 4.7 moles of a monatomic ideal gas (atomic mass = 8.5 × 10^-27 kg) are heated from 300K to 500K at a constant volume of 0.47 m^3. It may help you to recall that CVCV = 12.47 J/K/mole and CPCP = 20.79 J/K/mole for a

asked by Billy on February 9, 2016
7. ### physics

We start with 5.00 moles of an ideal monatomic gas with an initial temperature of 123C. The gas expands and, in the process, absorbs an amount of heat equal to 1300J and does an amount of work equal to 2040J. What is the final

asked by Annie on October 4, 2009
8. ### Physics

Three moles of an ideal monatomic gas are at a temperature of 396 K. Then 2438 J of heat is added to the gas, and 897 J of work is done on it. What is the final temperature of the gas?

asked by Carl on November 19, 2013
9. ### Phyics

Three moles of an ideal monatomic gas are at a temperature of 396 K. Then 2438 J of heat is added to the gas, and 897 J of work is done on it. What is the final temperature of the gas?

asked by Carl on November 19, 2013
10. ### Physics

Three moles of an ideal monatomic gas are at a temperature of 396 K. Then 2438 J of heat is added to the gas, and 897 J of work is done on it. What is the final temperature of the gas?

asked by Help Please on November 20, 2013

More Similar Questions