Prove that tan4x=4tanx(1-tan²x)/1-6tan²x+tan⁴x.

I think the best way to start would be

tan 4x = 2*tan 2x/(1-tan^2 2x)

= 2(2tanx/(1-tan^2x)) / (1-(2tanx/(1-tan^2x))^2)

Now place top and bottom over a common denominator of (1-tan^2x)^2
and you should see things going where you want them.

To prove that $\tan 4x = \frac{4\tan x (1- \tan^2 x)}{1-6\tan^2 x + \tan^4 x}$, we can use the fundamental trigonometric identity $\tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$.

Step 1: Start by converting the expression on the right-hand side to the sum of angles form.

$\tan 4x = \frac{4\tan x (1- \tan^2 x)}{1-6\tan^2 x + \tan^4 x}$

Let's simplify the numerator and denominator separately:

Numerator:
$4\tan x (1- \tan^2 x) = 4 \tan x - 4 \tan^3 x$

Denominator:
$1-6\tan^2 x + \tan^4 x = \tan^4 x - 6 \tan^2 x + 1$

Step 2: Replace the numerator and denominator in the original expression with their respective simplified forms.

$\tan 4x = \frac{4 \tan x - 4 \tan^3 x}{\tan^4 x - 6 \tan^2 x + 1}$

Step 3: Apply the sum of angles formula.

Let's set $A = x$ and $B = 3x$.

Using the sum of angles formula, we have:

$\tan (4x) = \tan (x + 3x) = \frac{\tan x + \tan (3x)}{1 - \tan x \tan (3x)}$

Now, we need to express $\tan (3x)$ in terms of $\tan x$.

Step 4: Expand $\tan (3x)$ using the triple-angle formula.

$\tan (3x) = \tan (x + 2x) = \frac{\tan x + \tan (2x)}{1 - \tan x \tan (2x)}$

Step 5: Use the double-angle formula to express $\tan (2x)$ in terms of $\tan x$.

$\tan (2x) = \frac{2 \tan x}{1 - \tan^2 x}$

Step 6: Substitute the expressions for $\tan (3x)$ and $\tan (2x)$ in terms of $\tan x$ back into the original equation.

$\tan (4x) = \frac{\tan x + \frac{2 \tan x}{1 - \tan^2 x}}{1 - \tan x \cdot \frac{2 \tan x}{1 - \tan^2 x}}$

Simplifying the denominator:

$1 - \tan x \cdot \frac{2 \tan x}{1 - \tan^2 x} = 1 - \frac{2 \tan^2 x}{1 - \tan^2 x} = \frac{1-3\tan^2 x}{1 - \tan^2 x}$

Step 7: Simplify the numerator and denominator.

$\tan (4x) = \frac{\frac{1}{1 - \tan^2 x} \left( \tan x + \frac{2 \tan x}{1 - \tan^2 x} \right)}{\frac{1-3\tan^2 x}{1 - \tan^2 x}}$

Simplifying further:

$\tan (4x) = \frac{\frac{1}{1 - \tan^2 x} \left( \frac{(1 - \tan^2 x) \tan x + 2 \tan x}{1 - \tan^2 x} \right)}{\frac{1-3\tan^2 x}{1 - \tan^2 x}}$

$\tan (4x) = \frac{\frac{1}{1 - \tan^2 x} \left( \frac{\tan x - \tan^3 x + 2 \tan x}{1 - \tan^2 x} \right)}{\frac{1-3\tan^2 x}{1 - \tan^2 x}}$

$\tan (4x) = \frac{\frac{1}{1 - \tan^2 x} \left( \frac{3 \tan x - \tan^3 x}{1 - \tan^2 x} \right)}{\frac{1-3\tan^2 x}{1 - \tan^2 x}}$

Step 8: Simplify the numerator and denominator one final time.

$\tan (4x) = \frac{3 \tan x - \tan^3 x}{1-3 \tan^2 x}$

This matches the expression we were originally trying to prove:

$\tan (4x) = \frac{4\tan x (1- \tan^2 x)}{1-6\tan^2 x + \tan^4 x}$

Therefore, we have successfully proven the given trigonometric identity.