math;)
Find the unit vector in the direction of u=(3,2). Write your answer as a linear combination of the standard unit vectors i and j.
a. u=3[sqrt(13)/13]i+2[sqrt(13)/13]j
b. u=3[sqrt(5)/5]i+2[sqrt(5)/5]j
c. u=3[sqrt(5)/5]i2[sqrt(5)/5]j
d. u=3[sqrt(13)/13]i+2[sqrt(13)/13]j
I do not understand this. Can someone please explain it to me?

u = √(9+4) = √13
So, divide u by its length to get a unit vector (length=1)
so, (a)
If you've advanced to the point where you're studying vectors, your teacher should stop insisting on rational denominators. I much prefer 1/√13 to the cumbersome √13/13
just sayin' ...posted by Steve

Hey is there any way that we could talk one on one? Im pretty sure were im the same math class as you and want some help pls!! :))
posted by Catneces
Respond to this Question
Similar Questions

Math:)
A person is on the outer edge of a carousel with a radius of 20 feet that is rotating counterclockwise around a point that is centered at the origin. What is the exact value of the position of the rider after the carousel rotates 
Math Help please!!
Could someone show me how to solve these problems step by step.... I am confused on how to fully break this down to simpliest terms sqrt 3 * sqrt 15= sqrt 6 * sqrt 8 = sqrt 20 * sqrt 5 = since both terms are sqrt , you can combine 
math,algebra,help
Directions are simplify by combining like terms. x radiacal 18 3 radical 8x^2 can someone show me how to do these types of problems. thanks I cant determine the second term. For the first, I think you meant x sqrt(18) which 
math;)
For v=5i2j, find unit vector u in the direction of v, and write your answer as a linear combination of the standard unit vectors i and j. a. u=5/7i2/7j b. u=5/29i2/29j c. u=5(sqrt(29))/29i2(sqrt(29))/29j d. 
Inequality
When I solve the inquality 2x^2  6 < 0, I get x < + or  sqrt(3) So how do I write the solution? Is it (+sqrt(3),sqrt(3)) or (infinity, sqrt(3))? Why? Thanks. So would this work? abs x < ( sqrt 3 ) or  sqrt 
Math(Roots)
sqrt(24) *I don't really get this stuff.Can somebody please help me? The square root of 24 is 4.898979485566356 I know that..lol,but it says not to use decimals.Here is an example they gave me. Ex.sqrt(18)=sqrt(2*3*3)=3sqrt(2) 
Math
How do you find a square root of a number that's not a perfect square? I'm very confused. The book doesn't explain it too well. You can approximate it or simplify it in terms of (products of) square roots of smaller numbers. E.g. 
Algebra
Evaluate sqrt7x (sqrt x7 sqrt7) Show your work. sqrt(7)*sqrt(x)sqrt(7)*7*sqrt(7) sqrt(7*x)7*sqrt(7*7) sqrt(7x)7*sqrt(7^2) x*sqrt 7x49*x ^^^ would this be my final answer? 
Calculus
Please look at my work below: Solve the initialvalue problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/ Sqrt(4^24(1)(6)))/2(1) r=(16 +/ Sqrt(8)) r=8 +/ Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2, 
Math/Calculus
Solve the initialvalue problem. Am I using the wrong value for beta here, 2sqrt(2) or am I making a mistake somewhere else? Thanks. y''+4y'+6y=0, y(0)=2, y'(0)=4 r^2+4r+6=0, r=(4 +/ sqrt(164(1)(6))/2 r=2 +/ sqrt(2)*i , alpha