# Trig

For parametric equations x=a cos t
And y=b sin t
Describe how the values of a and b determine which comic section will be traced.

1. 👍
2. 👎
3. 👁
1. the curve is an ellipse with semi-axes a and b.
If a=b it is a circle.

1. 👍
2. 👎

## Similar Questions

1. ### math

Find the values of sin θ, cos θ, and tan θ for the given right triangle (in the link below). Give the exact values. www.webassign.net/aufexc2/8-5-003.gif sin θ= cos θ= tan θ= my answer is c^2 = a^2 +b^2 c^2 = 5^2+12^2 c^2 =

2. ### trig

If cos(t)=(-7/8) where pi

3. ### self-study calculus

Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases. r(t)=cos(t)I -cos(t)j+sin(t)k I don't know what to do. I let x=cos(t), y=-cos(t) and z= sin(t). Should I let t be any

4. ### Trig

Find sin(s+t) and (s-t) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(-1/5)Sin(3/5) = 0.389418 Sin(s-t) =sin(s)cos(t) - cos(s)sin(t) =sin(-3/5)cos(1/5) -

1. ### Calculus

Graph the parametric equations: x=cos(t) y=sin(t) z=cos(2t) How would I go about solving this problem? thanks!

2. ### Calculus 12th grade (double check my work please)

1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.-2 sin 2x B.-2 sin 2x / sinh 3y C.-2/3tan (2x/3y) D.-2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) with

3. ### math

Can you please check my work. A particle is moving with the given data. Find the position of the particle. a(t) = cos(t) + sin(t) s(0) = 2 v(0) = 6 a(t) = cos(t) + sin(t) v(t) = sin(t) - cos(t) + C s(t) = -cos(t) - sin(t) + Cx + D

4. ### Trig

On the same set of axes, sketch and label the graphs of the equations y = cos 2x and y = –2 sin x in the interval 0 ≤ x ≤ 2π. How many values of x in the interval 0 ≤ x ≤ 2π satisfy the equation –2 sin x – cos 2x =

1. ### Math

Let G be the graph of the parametric equations x = cos(4t), y = sin(6t). What is the length of the smallest interval P such that the graph of these equations for all t E P produces the entire graph G?

2. ### trig

The expression 4 sin x cos x is equivalent to which of the following? (Note: sin (x+y) = sin x cos y + cos x sin y) F. 2 sin 2x G. 2 cos 2x H. 2 sin 4x J. 8 sin 2x K. 8 cos 2x Can someone please explain how to do this problem to

3. ### Precalculus

Let $\mathcal{G}$ be the graph of the parametric equations \begin{align*} x &= \cos(4t),\\ y &= \sin(6t). \end{align*}What is the length of the smallest interval $I$ such that the graph of these equations for all $t\in I$ produces

4. ### Calculus re-post

Does anybody know how to solve this question? a) Find the arc length function for the curve measured from the point P in the direction of increasing t from P and then reparametrize the curve with respect to arc length starting