# Calculus

If the series from n=1 to infinity of n^P converges, then which of the following is false?

a. P < 1
b. the series from n=1 to inf of n^-P converges
c. the integral from n=1 to inf of x^P dx is finite
d. the integral from n=1 to inf of x^(P-1) dx is finite
e. the integral from n=1 to inf of x^(P-2) dx is finite

I think the answer is b, because P must be less than -1 to converge, and -P would just be a positive P that would lead the series to diverge.

1. 0
2. 0
3. 8
asked by Anonymous

## Similar Questions

1. ### Calculus

Use the ratio test to find whether the series diverges or converges. 1/5^n (1 to infinity) I think the limit converges to 1/5, so the series converges.

asked by Anonymous on February 26, 2018
2. ### Calculus

Determine the following about the series. Indicate the test that was used and justify your answer. Sigma (lower index n = 1; upper index infinity) [sin((2n-1)pi/2)]/n A. The series diverges B. The series converges conditionally.

asked by Jenny on February 11, 2013
3. ### Calculus

For what values of p>0 does the series Riemann Sum [n=1 to infinity] 1/ [n(ln n) (ln(ln n))^p] converge and for what values does it diverge? You need to let the summation start at n = 3 to avoid the singularity at n = 1 (although

asked by Janice on November 13, 2006
4. ### Calculus

The problem with these two questions is that I cannot determine the a and r. The 3rd question-I don't know what I did wrong. Thanks for the help! Tell whether the series converges or diverges. If it converges, give its sum.

asked by Anonymous on February 23, 2008
5. ### Calculus

Determine whether the series from 0 to infinity of cos(nπ)/(n + 3) converges conditionally or absolutely. A. The series diverges. B. The series converges conditionally but not absolutely. C. The series converges absolutely but

asked by Anonymous on March 2, 2018
6. ### Calc II

Use the comparison or limit comparison test to decide if the following series converge. Series from n=1 to infinity of (4-sin n) / ((n^2)+1) and the series from n=1 to infinity of (4-sin n) / ((2^n) +1). For each series which

asked by Lauren on November 7, 2012
7. ### Mathematics

State whether this infinite series converges or diverges? 1+(t) + (t^3)+...... t=[(5x+6)/(3x-2)] My thoughts on the question: The sum of 'n' terms in a geometric progression is a[r^n - 1]/(r-1)--(let's calk this 1), where r>1 and

asked by Shenaya on June 8, 2017
8. ### Calc

Does 1/ln(x+1) converge or diverge? I've tried the nth term test, limit comparison test, and integral test. All I get is inconclusive. The other tests I have (geometric series, p-series, telescoping series, alternating series, and

asked by Mischa on March 22, 2007
9. ### calculus

determine whether the series converges of diverges the sum from n=1 to infinity of 1/(the square root of (n^3+1)) I said that through the comparision test (comparing to 1/the square root of (n^3) the series converges is this true?

asked by sarah on February 27, 2008
10. ### calculus

determine whether the series converges of diverges the sum from n=1 to infinity of 1/(the square root of (n^3+1)) I said that through the comparision test (comparing to 1/the square root of (n^3) the series converges

asked by sarah on February 26, 2008
11. ### calculus

determine whether the series converges of diverges the sum from k=2 to infinity of (the square root of (ln(k)))/k I said that because you can't integrate the series (goes to infinity) it diverges is this true?

asked by sarah on February 27, 2008

More Similar Questions