Physics

A vertical spring with a spring constant of 450 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.30 kg block is dropped from rest. It collides with and sticks to the spring, which is compressed by 3.0 cm in bringing the block to a momentary halt. Assuming air resistance is negligible, from what height (in cm) above the compressed spring was the block dropped?


For Further Reading


Physics - bobpursley, Wednesday, April 4, 2007 at 9:07pm
The spring compression had 1/2 k x^2 of work done on it. Assuming no losses to friction, then the energy that went into it was mg(h+x). Calculate h





DrRuss/bobpursley/drwls please help!!! - bobpursley, Friday, April 6, 2007 at 4:27pm
So what is the question?

I lead you to mg(h+x)= 1/2 kx^2

solve for h. If questions, you have to ask specific questions.



DrRuss/bobpursley/drwls please help!!! - Mary, Friday, April 6, 2007 at 8:41pm
Please tell me where I went wrong.


mg (h+x) = 1/2 K x^2

h = 1/2 (450)(3.0)^2/0.30kg x 9.81

h = 687.054



Thnaks for your help but I figured it out. I was suppose to convert it to m first then change the answer back to cm. Thanks again!

asked by Mary

Respond to this Question

First Name

Your Response

Similar Questions

  1. Physics

    A vertical spring with a spring constant of 450 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.30 kg block is dropped from rest. It collides with and sticks to the spring, which is compressed
  2. physics

    1.) A vertical spring with a spring constant of 450 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.30 kg block is dropped from rest. It collides with and sticks to the spring, which is
  3. physics

    1.) A vertical spring with a spring constant of 450 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.30 kg block is dropped from rest. It collides with and sticks to the spring, which is
  4. Physics

    A vertical spring with a spring constant of 400 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.30 kg block is dropped from rest. It collides with and sticks to the spring, which is compressed
  5. Physics

    A vertical spring with a spring constant of 400 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.30 kg block is dropped from rest. It collides with and sticks to the spring, which is compressed
  6. Physics

    A vertical spring with a spring constant of 400 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.30 kg block is dropped from rest. It collides with and sticks to the spring, which is compressed
  7. Physics

    A vertical spring with a spring constant of 410 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.26-kg block is dropped from rest. It collides with and sticks to the spring, which is compressed
  8. Physics. Urgent

    A vertical spring with a spring constant of 450 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.30 kg block is dropped from rest. It collides with and sticks to the spring, which is compressed
  9. DrRuss/bobpursley/drwls please help!!!

    Can you please clarify your response to my post Wednesday April 4th at 8:53pm and 8:54pm. Thanks for all of your help!!! pleasde repost it. Yes, repost it. Go to it, copy, and paste it here. Thanks. A vertical spring with a spring
  10. Physics

    A 263-g block is dropped onto a vertical spring with force constant k = 2.52N/cm. The block sticks to the spring, and the spring compress 11.8 cm before coming momentarily to rest. while the spring is being compressed, how much

More Similar Questions