Calculus

You have a conical tank, vertex down, which is 12 feet across the top and 18 feet deep. If water flows in at a rate of 9 cubic feet per minute, find the exact rate of change when the water is 6 feet deep.

You know the rate of dV/dt (inflow), and you can get the volume of a cone (1/3 h * toparea). So the trick is to write an equation relating top area to h (ie: toparea= PI*(12h/18)^2 /144 ) check that.

take the derivative of V with respect to h, and solve.

  1. 👍 0
  2. 👎 0
  3. 👁 159
asked by Tezuka

Respond to this Question

First Name

Your Response

Similar Questions

  1. Math

    A conical water tank with vertex down has a radius of 10 feet at the top and is 22 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 14

    asked by Sarah on October 5, 2014
  2. Math

    A conical water tank with vertex down has a radius of 10 feet at the top and is 22 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 14

    asked by Sarah on October 5, 2014
  3. math - calc

    A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12

    asked by Greg on October 1, 2013
  4. calculus

    A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 17

    asked by Mike on November 30, 2012
  5. math - calc

    A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12

    asked by Greg on October 1, 2013
  6. math

    A conical water tank with vertex down has a radius of 13 feet at the top and is 28 feet high. If water flows into the tank at a rate of 10 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 17

    asked by PAT on November 3, 2015
  7. calculus

    A conical water tank with vertex down has a radius of 12 feet at the top and is 28 feet high. If water flows into the tank at a rate of 30 ft^3/min, how fast is the depth of the water increasing when the water is 16 feet deep?

    asked by M on October 23, 2018
  8. Calculus (math)

    A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12

    asked by mariel on October 25, 2014
  9. Math

    A conical water tank with vertex down has a radius of 10 feet at the top and is 29 feet high. If water flows into the tank at a rate of 10 , how fast is the depth of the water increasing when the water is 17 feet deep?

    asked by Salman on October 15, 2009
  10. cal

    A conical tank (with vertex down) is 12 feet across the top and 18 feet deep. If water is flowing into the tank at a rate of 18 cubic feet per minute, find the rate of change of the depth of the water when the water is 10 feet

    asked by tony on November 2, 2013
  11. calculus-rate problem

    A conical tank (with vertex down) is 10 feet acros the top and 12 feet deep. If water is flowing into the tank at a rate of 10 cubic feet per minute, find the rate of change of the depth of the water when the water is 8 feet deep.

    asked by beth on August 30, 2007

More Similar Questions