# math

I need to know of a shape that has 4 sides and 3 vertices.

There is no planar figure with 4 sides and 3 vertices. 3 vertices and 3 sides define the minimal planar shape of the triangle. The addition of a 4th side would require 2 additional sides and 1 vertex to create a pyramidal shape having 6 sides and 4 vertices.

An examination of three dimensional polyhedra will also lead to no solution.

Finding regular polyhedra given the number of edges

A convex polyhedron is defined as a solid with flat faces and straight edges so configured as to have every edge joining two vertices and being common to two faces.

There are many convex polyhedra, only five of which are considered regular polyhedra. Regular polyhedra satisfy three criteria. All the faces are congruent. All faces have the same number of edges equal to, or greater than, three. Each vertex joins the same number of edges. The five regular polyhedra are the tetrahedron, cube, octahedron, dodecahedron and the icosahedron.

Euler's famous equation, v - e + f = 2, applies to all convex polyhedra where v equals the number of vertices, e equals the number of edges and f equals the number of faces.

Given the number of edges of a regular polyhedron, is it possible to determine the numbers of faces and vertices knowing that v - e + f = 2. It is possible given that the given number of edges does, in fact, represent a real convex polyhedron in the first place. Given just any number, there will not always be a polyhedron with that number of edges.

The smallest number of edges possible is 6 for the 4 sided tetrahedron consisting of 4 equilateral triangles joined along their edges to form a 3 sided pyramid. Not knowing the form of the polyhedra that contains the 6 edges, it is possible to derive the specific polyhedron having 6 edges. Given that v + f = e + 2 = 8, the only possible pairs of v and f are 3-5, 4-4, 5-3. If each face has m edges, then mf = 2e = 12. Similarly, if each vertex joins n edges, nv = 2e = 12. "m" must be 3 or greater leaving us with possible m's of 3, 4, or 6 and faces of 4, 3, or 2. Having already shown that "f" must be 5, 4, or 3, we are left with 4 or 3 as the only possible values for "f". Clearly 3 faces cannot form a closed convex polyhedron, leaving us with m = 3 and 4 faces. Knowing that we have 4 faces, "v" is also 4 and our polyhedron with 6 edges has 4 faces and 4 vertices, the tetrahedron.

Following this same path for other polyhedra is not as easy. What if the number of edges e = 12? We therefore know that v + f = 14 giving us possible combinations of v and f of 3-11, 4-10, 5-9, 6-8, 7-7, 8-6, 9-5, 10-4 and 11-3.

At this point, let me introduce two other useful facts about convex polyhedra. The number of vertices is at least 2 more than half the number of faces or v = f/2 + 2. Similarly, the number of faces is at least 2 more than half the number of vertices or f = v/2 + 2. Applying these two rules to our list of possible v's and f's, we end up with only 6-8 and 8-6 as viable candidates. Now we must take note of another piece of information that we can deduce very easily from what we have already explored. We already derived the only regular convex polyhedron with 3 edged (triangular) faces. The polyhedron we seek with 12 edges must therefore have faces containing at least 4 edges. Lets assume that each face has 4 edges and see where it takes us. If each face does, indeed, have 4 edges, we can the write, as we did above, 4f = 2e = 24 making f = 6 and v = 8. What have we here? By golly, the cube, a convex polyhedron having 6 congruent faces, 8 vertices and 12 edges.

Before moving on, I wonder whether you might have observed, or discovered, something that I failed to make obvious during the derivation of our cubic polyhedron? I deliberately led you down the path of concluding that the 4 edged face was the next regular convex polyhedron possible with 12 edges. Lets take a step backward for a minute and observe that the two "v" and "f" possibilities that remained after applying the two vertex and face rules were 6-8 and 8-6. By assuming that our next regular polyhedron had faces with 4 edges, we literally ignored the outside possibility that there might be another regular convex polyhedron with 3 edged faces. If I wrote 3f = 2e = 24, we would end up with f = 8 and v = 6. Is there a convex regular polyhedron with such characteristics? Yes, of course, or I wouldn't have taken you down this path in the first place. What if you created two 4 sided pyramids, each face being the same equilateral triangle, and joined them together at the square base. We end up with the octahedron having 8 faces, 6 vertices and 12 edges.

Now that we have mastered the 6 and 12 edged polyhedra, what if the number of edges e = 30?
With v + f = 32 we have candidates ranging from 4-28 to 28-2 which reduce to 12-20, 14-18, 16-16, 18-14 and 20-12 after applying the "v" and "f" rules. Before leaping ahead again, might there be another 3 edged face polyhedron? If we write 3f = 60 we end up with f = 20 and v = 12, one of our candidate polyhedrons. While not so obvious now, in reality, these values apply to the icosahedron, the regular convex polyhedron having 20 equilateral triangle faces, 12 vertices and 30 edges.

Little thought need be given to the possibility of another 4 edged face polyhedron as there is no way that additional square faces can be included within or around the cube to create another square faced polyhedron.

This leads us to move on to the 5 edged face, the pentagonal face. If we now write 5f = 60, we derive f = 12 and v = 20. Does this represent any polyhedron? Yes, the dodecahedron having 12 pentagonal faces, 20 vertices and 30 edges.

So far, we have deliberately explored the regular convex polyhedra as they were fairly easy to define. What about the irregular or prismatic polyhedra? What if we were given an e = 10? We then have v + f = 12 giving us possible "v" and "f" values of 4-8, 6-6, and 8-4 (2-10 or 10-2 are not viable as "v" must be 3 or greater as does the number of edges per face. Applying the "v" and "f" rules, the 4-8 and 8-4 drop out of the picture and we are left with the viable 6-6 candidate. If we try for triangular faces, 3f = 20 which has no solution. We know there is no other square faced solution beyond the cube. 5f = 20 leads to f = 4 and we already know that the only solution with 4 faces is the tetrahedron.

Within this general process, it is now somewhat difficult to state with any certainty what, if any, irregular polyhedron or prism satisfies these results. In other words, what, if any, polyhedron or prism has 6 faces, 6 vertices and 10 edges? It is here that I maintain that you must apply your visual acuity and 3 dimensional perception in discerning whether one exists. As it turns out, there is one, the pentagonal pyramid. This is a pyramid with a pentagonal shaped base having 6 faces, 6 vertices and 10 edges.

What about e = 9. We now have v + f = 11 giving us possible "v" and "f" values of 4-7, 5-6, 6-5 and 7-4. After applying the "v" and "f" rules, we are left with 5-6 and 6-5 as candidates. Well, 3f = 18 leads to f = 6 and v = 5 which happens to be the irregular convex pyramid of two equilateral faced pyramids joined at their bases and having 6 faces, 5 vertices and 9 edges. While not derivable using our expressions, it turns out that a truncated prism with triangular cross section has 5 faces, 6 vertices and 9 edges.

It is clear that some 3 dimensional visual acuity together with some mathematical knowledge are necessary to derive viable polyhedra given a supposedly valid number of edges.

In my meandering through the earlier material, I stumbled upon another way of deriving valid polyhedra given the number of edges. It is a bit more cumbersome but worthy of your review in case it might more easily apply to other polyhedra, which I have not pursued as yet.

Let us define our unknown polyhedron as having "f" faces, each having "m" edges, and "v" vertices, each joining "n' edges. It is clear that mf = 2e and nv = 2e. Substituting f = 2e/m and v = 2e/n into v - e + f = 2, we obtain 1/m + 1/n = 1/2 + 1/e = (e + 2)/2e.

Relationships of the form 1/x + 1/y = 1/z can be solved in the following manner.

If a value is selected for x, we then have 1/y = 1/z - 1/x = (x - z)/zx resulting in y = zx/(x - z) the solution then
becoming (x, y) = (x, zx/(x - z). We must therefore find the positive integers that make (x - z) a positive divisor of zx, where z is a given positive integer. This requires that (x - z) be = or > 1, i.e., x = or > (z + 1).
From y = zx/(x - z) we can derive y = [(x - z)z + z^2]/(x - z) = z + z^2/(x - z).
For y to be an integer, (x - z) must be a divisor of the constant z^2, noting that (x - z) must be positive.
If a positive integer k divides n^2, then setting (x - z) = k, we get the solution (x, y) = [(z + k), (z + z^2/k)].
Thus, the number of solutions is merely the number of positive divisors k of z^2.
If the prime decomposition of z is z = p1^a1(p2^a2) - - - - pk^ak, then z^2 = p1^2a1(p2^2a2) - - - - pk^2ak.
The number of solutions is then N = (2a1 + 1)(2a2 + 1) - - - - (2ak + 1).

Example: 1/x + 1/y = 1/10.
10 = 2^1 x 5^1
100 = 2^2 x 5^2
N = (2 + 1)(2 + 1) = 9
k = 1, 2, 4, 5, 10, 20, 25, 50, 100
For k = 1 x = 11 and y = 110
1/11 + 1/110 = 11/1210 + 110/1210 = 121/1210 = 1/10.
For k = 5 x = 15 and y = 30
1/15 + 1/30 = 15/450 + 30/450 = 45/450 = 1/10.
And so it goes.

How can we apply this to our problem?
Assume e = 6.
Then, 1/m + 1/n = (6 + 2)/12 = 8/12.
Dividing through by 8 yields 1/8m + 1/8n = 1/12.
12 = 2^2(3^1)
12^2 = 144 = 2^4(3^2)
N = (4 + 1)(2 + 1) = 15
k = 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144.
For k =.........8m.........8n........m.......n
........1..........13........156
........2..........14.........84
........3..........15.........60
........4..........16.........48.........2........6 (m must be 3 or greater, therefore, not viable)
........6..........18.........36
........8..........20.........30
........9..........21.........28
.......12.........24.........24.........3........3
.......16.........28.........21
.......18.........30.........20
.......24.........36.........18
.......36.........48.........16.........6........2 (m must be 3 or greater, therefore, not viable)
.......48.........60.........15
.......72.........84.........14
.....144........156........13
.
For m and n equaling 3, we have 3f = 2(6) = 12 making f = 4 and 3v = 12 making v = 4, the characteristics of a tetrahedron with 4 triangular faces, 4 vertices and 6 edges, whence 4 - 6 + 4 = 2.

What if e = 12?
Then, 1/m + 1/n = (12 + 2)/24 = 7/12.
Dividing through by 7 yields 1/7m + 1/7n = 1/12.
12 = 2^2(3^1)
12^2 = 144 = 2^4(3^2)
N = (4 + 1)(2 + 1) = 15
k = 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144.
For k =.........7m........7n.........m.......n
........1..........13........156
........2..........14.........84
........3..........15.........60
........4..........16.........48
........6..........18.........36
........8..........20.........30
........9..........21.........28..........3.......4
.......12.........24.........24
.......16.........28.........21..........4.......3
.......18.........30.........20
.......24.........36.........18
.......36.........48.........16
.......48.........60.........15
.......72.........84.........14
.....144........156........13
.
For m = 3 and n = 4, we have 3f = 2(12) = 24 making f = 8 and 4v = 24 making v = 6, the characteristics of an octahedron with 8 triangular faces, 6 vertices and 12 edges, whence 8 - 12 + 6 = 2.
For m = 4 and n = 3, we have 4f = 24 making f = 6 and 3v = 24 making v = 8, the characteristics of a cube with 6 faces, 8 vertices and 12 edges, whence 8 - 12 + 6 = 2.

What if e = 30?
Then, 1/m + 1/n = (30 + 2)/60 = 8/15.
Dividing through by 8 yields 1/8m + 1/8n = 1/15.
15 = 3^1(5^1)
15^2 = 225 = 3^2(5^2)
N = (2 + 1)(2 + 1) = 9
k = 1, 3, 5, 9, 15, 25, 45, 75, 225.
For k =.........8m........8n.........m.......n
........1...........16.......240
........3...........18........90
........5...........20........60
........9...........24........40..........3........5
.......15..........29........29
.......25..........40........24..........5........3
.......45..........60........20
.......75..........90........18
......225........240.......16
.
For m = 3 and n = 5, we have 3f = 2(30) = 60 making f = 20 and 5v = 60 making v = 12, the characteristics of an icosahedron with 20 triangular faces, 12 vertices and 30 edges, whence 12 - 30 + 20 = 2.
For m = 5 and n = 3, we have 5f = 60 making f = 12 and 3v = 60 making v = 20, the characteristics of a dodecahedron with 12 pentagonal faces, 20 vertices and 30 edges, whence 20 - 30 + 12 = 2.

As I said, not necessarily quicker.

This is not intended to be a complete treatment of the topic but it has been interesting and educatuional. I do not know if it has answered your original question but I'm sure it has shed some light on the matter. If you find any errors or false turns in the material I would appreciate your letting me know. If I have time in the future I hope to pursue it further to determine whether specific polyhedra and/or prisms can be more easily defined given only the edges, faces or vertices.

1. 👍 0
2. 👎 0
3. 👁 166
1. duncan has a shape with 6 faces and 12 edges.

1. 👍 0
2. 👎 0

## Similar Questions

1. ### 2nd grade math

take a shape with 4 sides. draw a line between two vertices that do not share a side. how many shapes does that make? how many sides do they have

asked by Mythreyee on January 29, 2015
2. ### Linear Algebra 2 question

Hello, I have another question from my linear algebra class. I'm asked to find the area of a triangle using determinants, but they don't give me the vertices, only the sides. Where A,B,C and D are the vertices, u and v are 2 out

asked by Robert on August 26, 2012
3. ### Geometry

Troy is thinking of a shape. He says that it has four sides and that no sides have equal length. He also says that no sides are parallel. What is the best name for his shape?

asked by Anonymous on March 11, 2012
4. ### Geometry

1 How many faces does a square pyramid have? 2 How many edges does a square pyramid have? 3 How many vertices does a square pyramid have? answer? 8, 5, 10 Viualize one of the great pyramids of Egypt. It's base is a square and it

asked by Trista on March 13, 2007
5. ### Math

how to explain to my child this math problem : davia draws a shape with 5 sides .Two sides are each 5 inches long . Two other sides are 4 inches long.The perimeter of the shape is 27 inches . What is the length of the fifth side?

asked by isabella on March 18, 2014
6. ### math214

3-D Shape Assignment Build a three dimensional shape and prepare a set of questions to be presented to the class for problem solving. Questions should encourage students to cover the concepts of perimeter, volume, surface area,

asked by alicia on March 4, 2010
7. ### 6 grade math

Coordinates are of the shape :of part a and b show these coordinates : (-2,-4), (-2,4), (2,4), (2,'4) Problem c: should I use a new figure or I can continue with same shape as part a and b . So how do I enlarge the shape: Draw a

asked by Jessica on January 24, 2017
8. ### math

A parallelogram is a convex quadrilateral with four vertices and two sets of opposite parallel sides. Given 3 of the vertices of a parallelogram at A (0,0) B(2,5) and C(2,0), find all possible coordinates for D.

asked by Kay on November 21, 2010
9. ### 4th grade

Megan drew a shape with four sides. Two of the sides are parallel. the other sides were not parallel. What kind of shape did Megan draw?

asked by anu on March 4, 2010
10. ### Algebra II-Please check my calculation

Find center, vertices, co-vertices and foci for the following; (x-3(^2/49 + (y-4)^2/4 = 1 Center would be (3,4) A=7 b=2 Vertices would be found this way: (h+-a,k) (3-7,4) (3+7,4) Vertices = (-4,4) (10,4) Co-vertices (h,k+-b)

asked by Sheila on March 28, 2011
11. ### maths - shapes

Can you name these quadrilaterals? a) All sides are the same length, opposite sides are parallel, angles are not 90 degrees. b) Two pairs of touching sides are the same length. The diagonals meet at right angles. Opposite sides

asked by janey on April 8, 2009

More Similar Questions