calculus 2

How to solve the definite integral of(3x+pi)cos3xdx from [pi over6,pi over 3]

  1. 0
  2. 2
asked by bern
  1. very difficult to me

    posted by bern

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    Can someone explain to me how to do these? Given the following definite integral and n=4 answer the following questions. (Round your answers to six decimal places.) 1. Use the Trapezoidal Rule to approximate the definite integral.
  2. Calculus

    Would someone clarify this for me... Is antiderivatives just another name for intergral and why is intergral of a function is the area under the curve? Antiderivatives is another word for integral. Why area? THink on this...the
  3. Calculus

    Solve these indefinite and definite integrals. [integration sign] 4j-5j^3 dj I got 2j^2 - 5/4j^4... is this my final answer? If j is the variable, for the indefinite integral you have to add a constant. For the definite integral,
  4. Calculus (urgent help)

    consider the function f that is continuous on the interval [-5,5] and for which the definite integral 0(bottom of integral sign) to 5(top of integral sign) of f(x)dx=4. Use the properties of the definite integral to evaluate each
  5. calculus

    consider the function f that is continuous on the interval [-5,5] and for which the definite integral 0(bottom of integral sign) to 5(top of integral sign) of f(x)dx=4. Use the properties of the definite integral to evaluate each
  6. calculus (please with steps and explanations)

    consider the function f that is continuous on the interval [-5,5] and for which the definite integral 0(bottom of integral sign) to 5(top of integral sign) of f(x)dx=4. Use the properties of the definite integral to evaluate each
  7. calculus

    There are four integrals: 1) definite integral x/(1+x^4)dx b/w 0_infinity 2) definite integral (x^2)/(1+x^4)dx b/w 0_infinity 3) definite integral (x^3)/(1+x^4)dx b/w 0_infinity 4) definite integral (x^4)/(1+x^4)dx b/w 0_infinity
  8. calculus

    There are four integrals: 1) definite integral x/(1+x^4)dx b/w 0_infinity 2) definite integral (x^2)/(1+x^4)dx b/w 0_infinity 3) definite integral (x^3)/(1+x^4)dx b/w 0_infinity 4) definite integral (x^4)/(1+x^4)dx b/w 0_infinity
  9. calculus

    Assuming that: Definite Integral of e^(-x^2) dx over [0,infinity] = sqrt(pi)/2 Solve for Definite Integral of e^(-ax^2) dx over [-infinity,infinity] I don't know how to approach the new "a" term. I can't use u-substitution,
  10. math

    Note: You can get full credit for this problem by just answering the last question correctly. The initial questions are meant as hints towards the final answer and also allow you the opportunity to get partial credit. Consider the

More Similar Questions