# Calculus

1) A particle is moving along the x-axis so that its position at t ≥ 0 is given by s(t) = (t)In(2t). Find the acceleration of the particle when the velocity is first zero.

2) The driver of a car traveling at 50 ft/sec suddenly applies the brakes. The position of the car is s(t) = 50t - 2t^2, t seconds after the driver applies the brakes. How many seconds after the driver applies the brakes does the car come to a stop?

3) The position of a particle on the x-axis at time t, t > 0, is s(t) = e^t with t measured in seconds and s(t) measured in feet. What is the average velocity of the particle for 0 ≤ t ≤ In3?

4) A particle moves along the x-axis so that at any time t, measured in seconds, its position is given by s(t) = sin(t) - 4cos(2t), measured in feet. What is the acceleration of the particle at time t = π seconds?

5) A particle moves with velocity function v(t) = -t^2 + 5t - 3, with v measured in feet per second and t measured in seconds. Find the acceleration of the particle at time t = 3 seconds.

1. 👍
2. 👎
3. 👁
1. I am not going to just do these for you. Did you try? Where did you get stuck?
Plug and chug, for example:
ds/dt = t* d/dt(ln 2t) + ln 2t
= t * (1/2t)2 + ln 2 t
= 1 + ln 2t
when is that zero?
ln 2t = -1
e^ln 2t = 2t =1/e
t = 1/(2e)

a = d^2s/dt^2 = d/dt(ds/dt)
= 0 + d/dt(ln2t) = (1/2t)2 = 1/t
so when t = 1/2e
that acceleration is 2e

1. 👍
2. 👎

## Similar Questions

1. ### AP Calculus

A particle moving along x-axis has velocity v(t) = sin(4t) at time t. If the particle is at x=4 when t=0, determine the position of the particle when t=pi/2.

2. ### Calc

A particle moves along the x-axis in such a way that it's position in time t for t is greator or equal to 0 is given by x= 1/3t^3 - 3t^2 +8 A) show that at time t= 0 the particle is moving to the right. B) find all values of t for

3. ### Calculus

The velocity of a particle moving along the x-axis is given by f(t)=6-2t cm/sec. Use a graph of f(t)to find the exact change in position of the particle from time t=0 to t=4 seconds.

4. ### Calculus

The position of a particle moving on a horizontal line is given by s(t)=2t^3-15t^2+24t-5, where s is measured in feet and t in seconds. a: What is the initial position of the particle? b: What is the average velocity of the

1. ### math

Consider a particle moving along the x-axis where x(t) is the position of the particle at time t, x' (t) is its velocity, and x'' (t) is its acceleration. x(t) = t3 − 12t2 + 21t − 7, 0 ≤ t ≤ 10 (a) Find the velocity and

2. ### math

The acceleration of a particle at a time t moving along the x-axis is give by: a(t) = 4e^(2t). At the instant when t=0, the particle is at the point x=2, moving with velocity v(t)=-2. Find the position of the particle at t=1/2 if

3. ### Calculus

The position of a particle moving along the x-axis at time t > 0 seconds is given by the function x(t) = e ^ t - 2t feet. a) Find the average velocity of the particel over the interval [1,3]. b) In what direction and how fast is

4. ### Calculus

At time t >or= to 0, the position of a particle moving along the x-axis is given by x(t)= (t^3/3)+2t+2. For what value of t in the interval [0,3] will the instantaneous velocity of the particle equal the average velocity of the

1. ### Calculus

a particle starts at time t = 0 and moves along the x axis so that its position at any time t>= 0 is given by x(t) = ((t-1)^3)(2t-3) a.find the velocity of the particle at any time t>= 0 b. for what values of t is the velocity of

2. ### Calculus

A particle is moving along the x-axis so that its position at t ≥ 0 is given by s(t)=(t)In(2t). Find the acceleration of the particle when the velocity is first zero. a)2e^2 b)2e c)e d)None of these Any help is greatly

3. ### calculus

5. A particle moves along the y – axis with velocity given by v(t)=tsine(t^2) for t>=0 . a. In which direction (up or down) is the particle moving at time t = 1.5? Why? b. Find the acceleration of the particle at time t= 1.5. Is

4. ### Calculous

A particle moves along the c-axis so that at time t its position is given by x(t)=t^2-6^t+9t+11 a)What is the velocity of the particle at t=0 b)During what time intervals is the particle moving to the left? c)What is the total