A bowling ball encounters a 0.76 m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. If the translational speed of the ball is 3.60 m/s at the bottom of the rise, find the translational speed at the top.

KE = 1/2(2/5)MR^2(V/R)^2= 1/5MV^2

KE = 1/5mv^2 - mgh

the mass as stated in the question is uniformly so it can be deleted from the above formula.

KE = 1/5v^2 - gh

KE = 1/5(3.60)^2 - (9.81 x 0.76)

KE = 2.592 - 7.4566

KE(final)= -4.8636

Am I right so far? If I am how do I calculate the final speed?

You have only treated the rotational part of the kinetic energy. You also must include the (1/2)MV^2 "translational" part. The total KE is (7/10)M V^2

You also have a problem with signs. The kinetic energy cannot be negative. The sum of potential and kinetic energies is constant. So the decrease in total KE as it goes to the top of the ramp equals the increase in potential energy, MgH.
(7/10)[Vo^2 - V1^2) = g H
Vo is the initial velocity. Solve for V1

I would like to say I appreciate your help with my homework!

I did the problem according to the formula you provided and the answer is incorrect. Can you please tell me where I went wrong.

I may have misinterpret the formula. This is what I came up with:

7/10 (V0^2 - V1^2)= gh

7/10((3.6)^2 - V1^2)= gh

7/10 (12.96 - V1^2)= 9.81 X 0.76

9.072 - V1^2= 7.4556

V1^2= 9.072 - 7.4556

V1^2= 1.6164

V1= square root 1.6164

V1= 1.2714

DrWLS is not on right now but one error I see you you didn't multiply V1 by 0.7. I've marked it below.
7/10 (V0^2 - V1^2)= gh

7/10((3.6)^2 - V1^2)= gh

7/10 (12.96 - V1^2)= 9.81 X 0.76

9.072 - V1^2= 7.4556 From the previous step, the V1^2 must be 0.7V1^2

V1^2= 9.072 - 7.4556

V1^2= 1.6164

V1= square root 1.6164

V1= 1.2714

Thank you so much!!!!!

1. 👍
2. 👎
3. 👁

## Similar Questions

1. ### Physics

A bowling ball weighing 71.2 N is attached to the ceiling by a 3.80 m rope. The ball is pulled to one side and released; it then swings back and forth like a pedulum. as the rope swings through its lowest point, the speed of the

2. ### Science!

If a bowling ball were moved from Earth to the moon, how would it's weight and mass change? A. The bowling ball would weigh the same, but it's mass would increase. B. The bowling ball would weigh the same, but it's mass would

3. ### physical science

A 6 kg bowling ball rolling at 5 m/s strikes a stationary 4 kg bowling ball. If ball #1 is moving forward at 2 m/s after the collision, what is the speed and direction of ball #2? What is the impulse of the system? If the

4. ### math

a bowling ball has a diameter of 8.4 in. It is made of plastic that weighs 0.05lb/in cubed.Find the weight of the bowling ball

1. ### physics

A spherical bowling ball with mass m = 4.1 kg and radius R = 0.116 m is thrown down the lane with an initial speed of v = 8.9 m/s. The coefficient of kinetic friction between the sliding ball and the ground is ¦Ì = 0.34. Once

A bowler rolls a 5 kg bowling ball down a magical frictionless bowling alley. The ball accelerates at an average rate of 2 m/s^2. How much force did the bowler apply to the ball?

3. ### Algebra

A. A bowling ball is dropped from a height of 35 feet write a function that gives the height h (in feet) of the bowling ball after t seconds H(t)=__ B. Find the height of the bowling ball after 1 second C. How long does the

4. ### Physics

A penny rests on top of a bowling ball. You give the bowling ball a slight bump and the penny slides off the frictionless, spherical surface as shown below. At what angle θ does the penny leave the surface of the bowling ball?

1. ### Parametrics

A bowling ball is rolled down and alley with a constant velocity of 1.4m/sec. at an angle of 86deg. To the starting line. The position of the person throwing the bowling ball can be represented by the point (0,0). Where is the

2. ### Physics

A bowling ball traveling with constant speed hits the pins at the end of a bowling lane 16.5 m long. The bowler hears the sound of the ball hitting the pins 2.51s after the ball is released from his hands. What is the speed of the

3. ### Physics

A bowling ball encounters a 0.76 m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. If the translational speed of

4. ### Mathematics -- Geometry --

A bowling ball is a solid ball with a spherical surface and diameter 30 cm. To custom fit a bowling ball for each bowler, three holes are drilled in the ball. Bowler Kris has holes drilled that are 8 cm deep and have diameters of