Evaluate the integral of (sin 2x)/(1+cos^2 x)

1. u=cosx and du=-sinx *dx

2. evaluate the integral of -1/(1+u^2)*du

3. result is -ln(1+u^2)+C

Where did the sin2x dissapear too???

recall that sin2x = 2 sinx cosx

(sin2x)/(1+cos^2x) dx
= 2cosx/(1+cos^2x) sinx dx
= -2u/(1+u^2) du

let v = 1+u^2, so dv = 2u du

= -dv/v

To evaluate the integral of (sin 2x)/(1+cos^2 x), we start by using the double-angle identity for sine: sin 2x = 2sin x cos x. Thus, we can rewrite the integral as:

∫ (2sin x cos x)/(1+cos^2 x) dx

Next, we use the substitution u = cos x, which implies du = -sin x dx. Rearranging this equation, we have dx = -du/sin x.

Substituting u = cos x and dx = -du/sin x into the integral, we get:

∫ (2 sin x cos x)/(1 + cos^2 x) dx = ∫ (2u)/(1 + u^2) * (-du/sin x)

Now, notice that sin x appears in the denominator. Since we have du = -sin x dx, we can substitute it in the integral:

∫ (2u)/(1 + u^2) * (-du/sin x) = -∫ (2u)/(1 + u^2) * (du/du)

Simplifying this expression, we obtain:

-∫ 2u/(1 + u^2) du

Integrating this expression with respect to u, we get:

-ln(1 + u^2) + C

Finally, substituting back u = cos x, we arrive at the result:

-ln(1 + cos^2 x) + C

So, the integral of (sin 2x)/(1+cos^2 x) is equal to -ln(1 + cos^2 x) + C.