# Math

Show that for real x that {[cos x + 2 sin x + 1]/[cos x + sin x] } cannot have a value between 1 and 2.

Let y = [(cos x+2 sin x + 1)/(cos x + sin x) ]

y(cos x + sin x) = (cos x + 2 sin x + 1)
sin x(y-2) + cos x(y-1)=1 , I just feel that this isn't the way to do this..

Any other way to do this?

1. 👍 0
2. 👎 0
3. 👁 142
1. cosx+2sinx+1 = (cosx+sinx) + (sinx+1)

So, your quotient can be written
1+(1+sinx)/(cosx+sinx)

Now, since cosx < 1, cosx+sinx < 1+sinx
So, (1+sinx)/(cosx+sinx) > 1

and the rest follows.

1. 👍 0
2. 👎 0
2. Hope you accept the fact that the max of cosx + sinx is √2
and its minimum is -√2
These occur at x = 45° and x = 225° (π/4 and 5π/4)
see: http://www.wolframalpha.com/input/?i=y+%3D+sinx%2Bcosx

we can write it as
y = (cosx + sinx + sinx + 1)/(cosx + sinx)
= 1 + (sinx + 1)/(sinx + cosx)

the graph of y = (cos x+2 sin x + 1)/(cos x + sin x)
suggests that the statement is true
see: http://www.wolframalpha.com/input/?i=plot+y+%3D+(cos+x%2B2+sin+x+%2B+1)%2F(cos+x+%2B+sin+x)

we have critical values at x = -45°, 135°, 315° , causing asymptotes for those values. The denominator would be zero.
Look at the first graph

consider the intervals from
a) -45° to 135° , we know that cosx+sinx has a max of √2 at 45° and is positive for that interval
and y = 1 + (sinx + 1)/(sinx + cosx)
= 1 + (positive)
y>1

at 135°, the function is undefined, or y is infinitely large ----> y > 1

for x between 135 and 315, cosx + sinx has a min of -√2 and is negative throughout the interval.

let's take some samples for y = 1 + (sinx + 1)/(sinx + cosx)
x = 140 , y = -12.3 , which gives us y < 1
x = 180, y = -2 , which gives us y < 1
x = 200, y = .4886 , which gives us y < 1
x = 225, y = .79.. , y < 1
x = 310, y = -.89.. , y < 1

according to my reasoning, at x = 320, we should get y > 1
x = 320 , y = 1 + (sin320 + 1)/(cos320+sin320) = 3.898.. , true enough

1. 👍 0
2. 👎 0
3. Looks like mine was overkill

1. 👍 0
2. 👎 0
4. Many thanks to both of you!

1. 👍 0
2. 👎 0

## Similar Questions

1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.-2 sin 2x B.-2 sin 2x / sinh 3y C.-2/3tan (2x/3y) D.-2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) with

2. ### Trig

A. Find simpler, equivalent expressions for the following. Justify your answers. (a) sin(180 + è) (b) cos(180 + è) (c) tan(180 + è) B. Show that there are at least two ways to calculate the angle formed by the vectors [cos 19,

3. ### self-study calculus

Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases. r(t)=cos(t)I -cos(t)j+sin(t)k I don't know what to do. I let x=cos(t), y=-cos(t) and z= sin(t). Should I let t be any

4. ### tigonometry

expres the following as sums and differences of sines or cosines cos8t * sin2t sin(a+b) = sin(a)cos(b) + cos(a)sin(b) replacing by by -b and using that cos(-b)= cos(b) sin(-b)= -sin(b) gives: sin(a-b) = sin(a)cos(b) - cos(a)sin(b)

1. ### trig

The expression 4 sin x cos x is equivalent to which of the following? (Note: sin (x+y) = sin x cos y + cos x sin y) F. 2 sin 2x G. 2 cos 2x H. 2 sin 4x J. 8 sin 2x K. 8 cos 2x Can someone please explain how to do this problem to

2. ### Trig

Find sin(s+t) and (s-t) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(-1/5)Sin(3/5) = 0.389418 Sin(s-t) =sin(s)cos(t) - cos(s)sin(t) =sin(-3/5)cos(1/5) -

3. ### Calculus

Find the velocity, v(t), for an object moving along the x-axis if the acceleration, a(t), is a(t) = cos(t) − sin(t) and v(0) = 3. a) v(t) = sin(t) + cos(t) +3 b) v(t) = sin(t) + cos(t) +2 c) v(t) = sin(t) - cos(t) +3 d) v(t) =

Given cos 67.5° = [√(2+√2)]/2, find tan 67.5° , simplify where needed, and show work. I'm starting to learn this stuff, and I'm so confused where to start. I know they gave me the coordinate X as in cos 67.5° =

1. ### triggggg help

Let cos 67.5° = [√(2(+√2)]/2, find tan 67.5°. Show work and simplify. I'm not too sure if i'm doing this correct. I know that the given is cos 67.5° = [√(2(+√2)]/2 sin^2 x + cos^2 x = 1 x=67.5° sin^2 67.5° + cos^2

2. ### Precalculus

Use one of the identities cos(t + 2πk) = cos t or sin(t + 2πk) = sin t to evaluate each expression. (Enter your answers in exact form.) (a) sin(19π/4) (b) sin(−19π/4) (c) cos(11π) (d) cos(53π/4) (e) tan(−3π/4) (f)

3. ### calc

Where do I start to prove this identity: sinx/cosx= 1-cos2x/sin2x please help!! Hint: Fractions are evil. Get rid of them. Well, cos2x = cos2x - sin2x, so 1-coscx = 1 - cos2x - sin2x = 1 - cos2x + sin2x You should be able to

4. ### Math

Can somebody show I steps to simplify this [9(sin(t)^4 cos(t)^2 +cos(t)^4 sin(t)^2)]/[9(cos(t)^4 sin(t)^2 +sin(t)^4 cos(t)^2 )]^(3/2