Sin x\2,cos x\2 and tan x\2 for sin x=1\4. x in II quadrant.

sin x = 1 / 4

cos x = ± √ ( 1 - sin ^ 2 x )

In II quadrant cosine is negative so:

cos x = - √ ( 1 - sin ^ 2 x )

cos x = - √ [ 1 - (1 / 4 ) ^ 2 ]

cos x = - √ [ 1 - (1 / 16 ) ]

cos x = - √ [ 16 / 16 - (1 / 16 ) ]

cos x = - √ [ ( 16 - 1 ) / 16 ) ]

cos x = - √ ( 15 / 16 )

cos x = - √15 / 4

Now:

sin ( x / 2 ) = ± √ [ ( 1 - cos x ) / 2 ]

If angle lies in quadrant II half angle lies in quadrant I.

In I quadrant sine is positive so:

sin ( x / 2 ) =√ [ ( 1 - cos x ) / 2 ]

sin ( x / 2 ) = √ [ ( 1 - ( - √15 / 4 ) ) / 2 ]

sin ( x / 2 ) = √ [ ( 1 + √15 / 4 ) / 2 ]

sin ( x / 2 ) = √ [ ( 4 / 4 + √15 / 4 ) / 2 ]

sin ( x / 2 ) = √ [ ( 4 + √15 ) / 4 / 2 ]

sin ( x / 2 ) = √ [ ( 4 + √15 ) 4 * 2 ]

sin ( x / 2 ) = √ [ ( 4 + √15 ) / ( 2 * 4 ) ]

sin ( x / 2 ) = √ [ ( 4 + √15 ) / ( 2 * √ 4 ) ]

sin ( x / 2 ) = √ [ ( 4 + √15 ) / ( 2 ) * √ 4 ) ]

sin ( x / 2 ) = √ [ ( 4 + √15 ) / ( 2 ) * 2 ) ]

sin ( x / 2 ) = √ [ ( 4 + √15 ) / 2 ] / 2

cos ( x / 2 ) = ± √ [ ( 1 + cos x ) / 2 ]

In I quadrant cosine is positive so:

cos ( x / 2 ) =√ [ ( 1 + cos x ) / 2 ]

cos ( x / 2 ) = √ [ ( 1 + ( - √15 / 4 ) ) / 2 ]

cos ( x / 2 ) = √ [ ( 1 - √15 / 4 ) / 2 ]

cos ( x / 2 ) = √ [ ( 4 / 4 - √15 / 4 ) / 2 ]

cos ( x / 2 ) = √ [ ( 4 - √15 ) / 4 / 2 ]

cos ( x / 2 ) = √ [ ( 4 - √15 ) 4 * 2 ]

cos ( x / 2 ) = √ [ ( 4 - √15 ) / ( 2 * 4 ) ]

cos ( x / 2 ) = √ [ ( 4 - √15 ) / ( 2 * √ 4 ) ]

cos ( x / 2 ) = √ [ ( 4 - √15 ) / ( 2 ) * 2 ) ]

cos ( x / 2 ) = √ [ ( 4 - √15 ) / 2 ] / 2

tan ( x / 2 ) = sin ( x / 2 ) / cos ( x / 2 )

tan ( x / 2 ) = [ √ [ ( 4 + √15 ) / 2 ] / 2 ] / [ √ [ ( 4 - √15 ) / 2 ] / 2 ]

tan ( x / 2 ) = √ ( 4 + √15 ) / √ ( 4 - √15 )

tan ( x / 2 ) = √ [ ( 4 + √15 ) / ( 4 - √15 ) ]

You also can write this in simplified form:

sin ( x / 2 ) = √ [ ( 4 + √15 ) / 4 * 2 ]

sin ( x / 2 ) = √ ( 4 + √15 ) / √ ( 4 * 2 )

sin ( x / 2 ) = √ ( 4 + √15 ) / ( √4 * √2 )

sin ( x / 2 ) = √ ( 4 + √15 ) / ( 2 * √2 )

sin ( x / 2 ) = √ ( 4 + √15 ) / 2 √2

cos ( x / 2 ) = √ [ ( 4 - √15 ) / 4 * 2 ]

cos ( x / 2 ) = √ ( 4 - √15 ) / √ ( 4 * 2 )

cos ( x / 2 ) = √ ( 4 - √15 ) / ( √4 * √2 )

cos ( x / 2 ) = √ ( 4 - √15 ) / ( 2 * √2 )

cos ( x / 2 ) = √ ( 4 - √15 ) / 2 √2

tan ( x / 2 ) = sin ( x / 2 ) / cos ( x / 2 )

tan ( x / 2 ) = [ √ ( 4 + √15 ) / 2 √2 ] / [ √ ( 4 - √15 ) / 2 √2 ]

tan ( x / 2 ) = √ ( 4 + √15 ) / √ ( 4 - √15 )

tan ( x / 2 ) = √ [ ( 4 + √15 ) / ( 4 - √15 ) ]

Belated thanks...

To find the values of sin(x/2), cos(x/2), and tan(x/2) when sin(x) = 1/4 and x is in the second (II) quadrant, we can follow the steps below:

Step 1: Find the value of cos(x) using the given information.

Since sin(x) = 1/4 and x is in the second quadrant, we know that sin(x) is positive in the second quadrant. So sin(x) = 1/4 means that the opposite side of the right triangle has a length of 1, and the hypotenuse has a length of 4. Using the Pythagorean theorem, we can find the length of the adjacent side (cos(x)):

cos(x) = √(1 - sin^2(x)) = √(1 - (1/4)^2) = √(1 - 1/16) = √(15/16) = √15/4 = √15/2.

Step 2: Use the half-angle formulas to find the values of sin(x/2), cos(x/2), and tan(x/2) using the value of cos(x) obtained in Step 1.

The half-angle formulas are:

sin(x/2) = ±√[(1 - cos(x)) / 2]
cos(x/2) = ±√[(1 + cos(x)) / 2]
tan(x/2) = sin(x/2) / cos(x/2)

Since x is in the second quadrant, we know that sin(x/2) and cos(x/2) will both be positive.

Substituting the value of cos(x) from Step 1 into the half-angle formulas:

sin(x/2) = √[(1 - √15/2) / 2]
cos(x/2) = √[(1 + √15/2) / 2]
tan(x/2) = sin(x/2) / cos(x/2)

Now you can simplify the expressions further if needed.

Note: The values of sin(x/2), cos(x/2), and tan(x/2) will be approximations since √15 is an irrational number.