Calculus

What are the dimensions of a rectangular field of area A that requires the least amount of fencing?

  1. 👍 0
  2. 👎 0
  3. 👁 195
  1. a square

    1. 👍 0
    2. 👎 0
  2. Are you saying that the answer is lw?

    1. 👍 0
    2. 👎 0
  3. Does this problem have a solution? Could you please type it in for me. Thanks! :)

    1. 👍 0
    2. 👎 0
  4. Huh, you can't figure the dimensions of s square of area A?

    The maximum area for a given perimeter is a square.

    The minimum perimeter for a given rectangular area is a square.

    So, the length and width would both be √A

    But, since you seem to be taking calculus, look at the dimensions. If the width is x, the length is A/x

    The perimeter is
    p = 2(x + A/x)
    dp/dx = 2(1 - A/x^2)
    dp/dx = 0 when 1 - A/x^2 = 0
    That is, when x = √A

    as we started out.

    1. 👍 0
    2. 👎 0

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    A construction company wants to build a rectangular enclosure with an area of 1000 square feet by fencing in three sides and using its office building as the fourth side. Your objective as supervising engineer is to design the

  2. Algebra

    A rectangular field is four times as long as it is wide. If the perimeter of the field is 400 yards, what are the fields dimensions? The width of the rectangular field is ____ yards.

  3. Calc.

    Please help solve this, A farmer has 600m of fence and wants to enclose a rectangular field beside a river. Determine the dimensions of the fence field in which the maximum area is enclosed. (Fencing s required on only three

  4. calculus

    Sam has 1200 feet of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. Express the area of the field as a function of its dimension. Find the dimensions of the

  1. Calculus

    A rancher plans to make four identical and adjacent rectangular pens against a barn, each with an area of 100m^2. what are the dimensions of each pen that minimize the amount of fence that must be used?

  2. precalculus

    A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He does not need a fence along the river (see the figure). What are the dimensions of the field of largest area that he can

  3. Applied calculus

    A rectangular plot requires 2000 m of fencing to enclose it. If one of the dimensions is x meters, express the area y (m2) as a function of x. Determine the range of x.

  4. math

    a. A rectangular pen is built with one side against a barn. 1200 m of fencing are used for the other three sides of the pen. What dimensions maximize the area of the​ pen? b. A rancher plans to make four identical and

  1. Math

    A farmer wishes to put a fence around a rectangular field and then divide the field into three rectangular plots by placing two fences parallel to one of the sides. If the farmer can afford only 1600 yards of fencing, what

  2. Algebra

    Word Problems: 1. A farmer has 2400 feet of fencing and wants to fence off a rectangular field that borders a straight river. If he needs no fence along the river, what are the dimensions of the field that he can fence with the

  3. math

    A farmer has 110 metres of fencing to fence off a rectangular area. Part of one side is a wall of length 15m. Find the dimensions of the field that give the maximum area. Answers: length and width = 31,25m Thank you so much for a

  4. math

    A rectanglar blacktop with a length of 5x and a width of 3x has been erected inside a rectangular field that has a length of 12x and a width of 7x. What is the area of the part of the field that is not blacktop? (I believe the

You can view more similar questions or ask a new question.