Compute F'(-4) where F(x) = x^3 + X^2 (using the definition of the derivative)

F'(-4)

= lim(h->0) [((-4+h)^3 + (-4+h)^2) - ((-4)^3+(-4)^2)]/h

= lim(h->0) [(h^3-11h^2+40h-48)-(-48)]/h

= lim(h->0) (h^3-11h^2+40h)/h
= lim(h->0) (h^2-11h+40)
= 40

To compute F'(-4) using the definition of the derivative, we need to calculate the limit as h approaches 0 of the difference quotient:

F'(-4) = lim(h->0) [(F(-4 + h) - F(-4))/h]

First, let's compute F(-4 + h):

F(-4 + h) = (-4 + h)^3 + (-4 + h)^2

Now, let's calculate F(-4):

F(-4) = (-4)^3 + (-4)^2

Next, let's subtract F(-4) from F(-4 + h):

F(-4 + h) - F(-4) = [(-4 + h)^3 + (-4 + h)^2] - [(-4)^3 + (-4)^2]

= (h^3 + 3h^2*(-4) + 3h*(-4)^2 + (-4)^3) + (h^2 + 2h*(-4) + (-4)^2) - (64 + 16)

= h^3 - 12h^2 - 32h - 48

Now, we substitute the difference quotient into the limit:

F'(-4) = lim(h->0) [(F(-4 + h) - F(-4))/h]

= lim(h->0) [(h^3 - 12h^2 - 32h - 48)/h]

Finally, we evaluate the limit. To do this, we factor out h from the numerator:

F'(-4) = lim(h->0) [h^2 - 12h - 32 - 48/h]

As h approaches 0, the last term, 48/h, goes to infinity. So we can ignore it. This leaves us with:

F'(-4) = lim(h->0) [h^2 - 12h - 32]

Plugging in h=0, we get:

F'(-4) = (0)^2 - 12(0) - 32

F'(-4) = -32

Therefore, the value of F'(-4) using the definition of the derivative is -32.