Physics

Three children are riding on the edge of a merry–go–round that is 84 kg, has a 1.40–m radius, and is spinning at 20.0 rpm. The children have masses of 21.0, 24.0, and 29.0 kg. If the child who has a mass of 24.0 kg moves to the center of the merry–go–round, what is the new angular velocity in rpm?

  1. 👍
  2. 👎
  3. 👁
  1. hmmm ®

    1. 👍
    2. 👎
  2. alt169 ⌐

    1. 👍
    2. 👎
  3. alt174 «

    1. 👍
    2. 👎
  4. html ® reg

    1. 👍
    2. 👎
  5. try that

    1. 👍
    2. 👎
  6. tm &#8482 tm

    1. 👍
    2. 👎
  7. 174 ® 174

    1. 👍
    2. 👎
  8. copy ® copy

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. physics

    A teenager pushes tangentially on a small hand-driven merry-go-round and is able to accelerate it from rest to a frequency of 12 in 9.0 . Assume the merry-go-round is a uniform disk of radius 2.2 and has a mass of 650 , and two

  2. phyics

    Cheryl is riding on the edge of a merry-go-round, 2m from the center, which is rotating with an increasing angular speed. Cheryl’s tangential acceleration is 3.0m/s2. At the instant that Cheryl’s linear speed is 4.0m/s, what

  3. Physics

    A merry-go-round with a a radius of R = 1.95 m and moment of inertia I = 192 kg-m2 is spinning with an initial angular speed of ω = 1.41 rad/s in the counter clockwise direection when viewed from above. A person with mass m = 63

  4. Physics

    A merry-go-round is a common piece of playground equipment. A 2.4 m diameter merry-go-round with a mass of 300 kg is spinning at 22 rpm. John runs tangent to the merry-go-round at 5.0 m/s, in the same direction that it is turning,

  1. Physics

    2) A child sits on a merry-go-round, 1.5 meters from the center. The merry-go-round is turning at a constant rate, and the child is observed to have a radial acceleration of 2.3m/s^2. How long does it take for the merry-go-round

  2. Physics

    A playground merry-go-round of radius R = 1.92m has a moment of inertia of I = 221kgm^2 and is rotating at 14.0rev/min about a frictionless vertical axle. Facing the axle, a 29.8kg child hops onto the merry-go-round and manages to

  3. Physics

    A brave child decides to grab onto an already spinning merry‑go‑round. The child is initially at rest and has a mass of 24.5 kg. The child grabs and clings to a bar that is 1.60 m from the center of the merry‑go‑round,

  4. College Physics

    A 40 kg child is standing on the edge of a merry-go-round in a playground. Before they were deemed too dangerous, these were quite common. They were just huge rotating platforms you could sit on while someone spun you around in

  1. physics help please

    A 33kg child named Lindsey runs as fast as she can and jumps onto the outer edge of a merry-go-round. The merry-go-round is initially at rest and has a mass of 78kg and a radius of 2.20m. Lindsey's linear velocity was 9 m/s at the

  2. Physics Inertia : Merry-go-round

    A playground merry-go-round of radius 1.96 m has a moment of inertia 335 kg m2 and is rotating at 12.3 rev/min. A child with mass 43.1 kg jumps on the edge of the merry-go-round. What is the new moment of inertia of the

  3. Physics

    A merry-go-round is at rest before a child pushes it so that it rotates with a constant angular acceleration for 38.0 s. When the child stops pushing, the merry-go-round is rotating at 1.20 rad/s. How many revolutions did the

  4. physics

    Two children (m = 34.0 kg each) stand opposite each other on the edge of a merry-go-round. The merry-go-round, which has a mass of 1.60 ✕ 10^2 kg and a radius of 1.6 m, is spinning at a constant rate of 0.34 rev/s. Treat the two

You can view more similar questions or ask a new question.