the number of bacteria in a certain population is predicted to increase according to a continuous exponential growth model at a relative rate of 6% per hour. suppose that a sample culture has an initial population of 94 bacteria. find the predicted population after four hours.

  1. 👍
  2. 👎
  3. 👁
  1. p = 94 e^(.06 * 4)

    1. 👍
    2. 👎
  2. 94 * .06 = the first hour
    times that number by 4

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. Math

    A certain type of bacteria is growing at an exponential rate that can be modeled by the equation y=ae^kt, where t represents the number of hours. There are 300 bacteria initially, and 1500 bacteria 5 hours later. How many bacteria

  2. Math

    The generation time G for a particular bacterium is the time it takes for the population to double. The bacteria increase in population is shown by the formula G = t over 3.3log a p, where t is the time period of the population

  3. math

    A biologist grows a culture of bacteria as part of an experiment. At the start of the experiment, there are 75 bacteria in the culture. The biologist observes that the population of bacteria dobules evert 18 minutes. Which of the

  4. Calc

    The number of bacteria in a culture is increasing according to the law of exponential growth. There are 125 bacteria in the culture after 2 hours and 350 bacteria after 4 hours. a) Find the initial population. b) Write an

  1. Algebra 2 check my answer please?

    The population of a bacteria in a Petri dish doubles every 16 hours. The population of the bacteria is initially 500 organisms. How long will it take for the population of the bacteria to reach 800? Round your answer to the

  2. math

    The rate of increase of bacteria in a culture is proportional to the number of bacteria present .if the original number of bacteria double in the two hours, in how many hours will it be five times?

  3. Algebra

    The number of bacteria in a certain population increases according to a continuous exponential growth model, with a growth rate parameter of 3.7% per hour. How many hours does it take for the size of the sample to double? Note:

  4. pre calc

    The number N of bacteria in a culture at time t (in hours) grows exponentially according to the function N(t) = 1000e^0.01t. 1.What is the population after 4 hours? 2.When will the number of bacteria reach 1700? 3. When will the

  1. PreCalc

    The initial size of a culture of bacteria is 1500. After 1 hour the bacteria count is 12000. (a) Find a function n(t) = n0e^rt that models the population after t hours. (Round your r value to five decimal places.) n(t) = (b) Find

  2. Calculus

    A bacteria culture contains 200 cells initially and grows at a rate proportional to its size. After half an hour the population has increased to 360 cells. (a) Find the number of bacteria after t hours. (b) Find the number of

  3. calculus

    2. The rate of change in the number of bacteria in a culture is proportional to the number present. In a certain laboratory experiment, a culture has 10,000 bacterial initially, 20,000 bacteria at time t1 minutes, and 100,000

  4. Algebra

    Bacteria are the most common example of exponential growth. The table below shows the number of E-Coli bacteria that would be present after each hour for the first six hours. Hours Number of Bacteria 1 32 2 256 3 2048 4 16384 5

You can view more similar questions or ask a new question.