Math

Use a triple integral to find the volume of the given solid.
The tetrahedron enclosed by the coordinate planes and the plane
8x + y + z = 4

  1. 👍
  2. 👎
  3. 👁

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    The base of a solid in the xy-plane is the first-quadrant region bounded y = x and y = x^2. Cross sections of the solid perpendicular to the x-axis are equilateral triangles. What is the volume, in cubic units, of the solid? So I

  2. Calculus

    Find the volume of the solid by subtracting two volumes, the solid enclosed by the parabolic cylinders y = 1 - x 2, y = x 2 - 1 and the planes x + y + z = 2, 6x + y - z + 16 = 0.

  3. Calculus

    1. Find the domain for the particular solution to the differential equation dy/dx=3y/x, with initial condition y(1) = 1. A. x > 0 B. x < 0 C. x ≠ 0 D. All real numbers 2. Use geometry to evaluate the integral from negative 2 to

  4. Calculus

    Consider a regular tetrahedron whose face is an equilateral triangle of side 7. Find the area of the horizontal cross section A at the level z=3. A= ? Find the volume of the tetrahedron. Consider a regular tetrahedron whose face

  1. Calculus

    The base of a solid is bounded by the curve y=sqrt(x+1) , the x-axis and the line x = 1. The cross sections, taken perpendicular to the x-axis, are squares. Find the volume of the solid a. 1 b. 2 c. 2.333 d. none of the above I

  2. Calculus :)

    Find the volume of the solid formed by rotating the region enclosed by y=e^(3x)+2, y=0, x=0, x=0.4 about the x-axis.

  3. Calculus

    The base of a solid is the region enclosed by the graph of x^2 + 4y^2 = 4 and cross-sections perpendicular to the x-axis are squares. Find the volume of this solid. a. 8/3 b. 8 pi/3 c. 16/3 d. 32/3 e. 32 pi/3 Thanks in advance! :)

  4. Calculus (math)

    The volume of the solid obtained by rotating the region enclosed by y=1/x4,y=0,x=1,x=6 about the line x=−2 can be computed using the method of cylindrical shells via an integral. it would be great if you can just even give me

  1. Calculus

    The region enclosed by the graph of y = x^2 , the line x = 2, and the x-axis is revolved abut the y-axis. The volume of the solid generated is: A. 8pi B. 32pi/5 C. 16pi/3 D. 4pi 5. 8pi/3 I solved for x as √y and set up this

  2. Calculus

    Find the volume of the solid formed by rotating the region enclosed by y=e^(1x)+4 y=0 x=0 x=0.3 about the x-axis. I attempted this problem numerous time and kept on getting 5.501779941pi, using the formale integral of pi(r^2)

  3. Math

    Let R be the region bounded by the following curves. Use the disk​ (washer) method to find the volume of the solid generated when R is revolved about the​ y-axis. y=x, y=3x, y=6 Set up the integral that gives the volume of the

  4. calculus review please help!

    1) Find the area of the region bounded by the curves y=arcsin (x/4), y = 0, and x = 4 obtained by integrating with respect to y. Your work must include the definite integral and the antiderivative. 2)Set up, but do not evaluate,

You can view more similar questions or ask a new question.