# calc limit

lim (2^x - 3^-x)/2^x + 3^-x
x-> infinity

Thanks.

Do you mean
(2^x - 3^-x)/(2^x + 3^-x) or
[(2^x - 3^-x)/2^x] + 3^-x
?
in other words, is the second 3^-x in the denominator?

In any case, the limit of 3^-x as x-> infnity is zero. That should help you figure out the answer.

Yes it is in the denominator.
I just get infinity/infintiy, which is not an answer

1. 👍 0
2. 👎 0
3. 👁 68

## Similar Questions

1. ### Calc. Limits

Are these correct? lim x->0 (x)/(sqrt(x^2+4) - 2) I get 4/0= +/- infinity so lim x->0+ = + infinity? and lim x->0- = + infinity? lim x->1 (x^2 - 5x + 6)/(x^2 - 3x + 2) I get 2/0, so lim x-> 1+ = - infinity? and lim x->1- = +

asked by Chelsea on October 13, 2010
2. ### calc

Are these correct? lim x->0 (x)/(sqrt(x^2+4) - 2) I get 4/0= +/- infinity so lim x->0+ = + infinity? and lim x->0- = + infinity? lim x->1 (x^2 - 5x + 6)/(x^2 - 3x + 2) I get 2/0, so lim x-> 1+ = - infinity? and lim x->1- = +

asked by Chelsea on October 13, 2010

Are these correct? lim x->0 (x)/(sqrt(x^2+4) - 2) I get 4/0= +/- infinity so lim x->0+ = + infinity? and lim x->0- = + infinity? lim x->1 (x^2 - 5x + 6)/(x^2 - 3x + 2) I get 2/0, so lim x-> 1+ = - infinity? and lim x->1- = +

asked by Chelsea on October 14, 2010
4. ### calculus

State which of the conditions are applicable to the graph of y = f(x). (Select all that apply.) lim x→infinity f(x) = −infinity lim x→a+ f(x) = L lim x→infinity f(x) = L f is continuous on [0, a] lim x→infinity f(x) = 0

asked by Lyric on September 22, 2011
5. ### Math

Find the limit if it exists. lim 1/(x-2) = infinity x→2+ lim 1/(x-2) = negative infinity x→2- lim 1/(x-2) = Does not exist x→2 lim (3x+2) = infinity x→∞ lim 999/(x^3) = 0 x→-∞ Can someone check to make sure that I am

asked by David on May 19, 2016
6. ### Calculus Limits

Question: If lim(f(x)/x)=-5 as x approaches 0, then lim(x^2(f(-1/x^2))) as x approaches infinity is equal to (a) 5 (b) -5 (c) -infinity (d) 1/5 (e) none of these The answer key says (a) 5. So this is what I know: Since

asked by Anonymous on March 2, 2019
7. ### calculus - ratio test

infinity of the summation n=1: (e^n)/(n!) [using the ratio test] my work so far: = lim (n->infinity) | [(e^n+1)/((n+1)!)] / [(e^n)/(n!)] | = lim (n->infinity) | [(e^n+1)/((n+1)!)] * [(n!)/(e^n)] | = lim (n->infinity) |

asked by COFFEE on July 30, 2007
8. ### Calculus - ratio test

infinity of the summation n=1: (e^n)/(n!) [using the ratio test] my work so far: = lim (n->infinity) | [(e^n+1)/((n+1)!)] / [(e^n)/(n!)] | = lim (n->infinity) | [(e^n+1)/((n+1)!)] * [(n!)/(e^n)] | = lim (n->infinity) |

asked by COFFEE on July 29, 2007
9. ### calculus - interval of convergence

infinity of the summation n=0: ((n+2)/(10^n))*((x-5)^n) .. my work so far. i used the ratio test = lim (n-->infinity) | [((n+3)/(10^(n+1)))*((x-5)^(n+1))] / [((n+2)/(10^n))*((x-5)^n)] | .. now my question is: was it ok for me to

asked by COFFEE on July 30, 2007
10. ### calculus - interval of convergence

infinity of the summation n=0: ((n+2)/(10^n))*((x-5)^n) .. my work so far. i used the ratio test = lim (n-->infinity) | [((n+3)/(10^(n+1)))*((x-5)^(n+1))] / [((n+2)/(10^n))*((x-5)^n)] | .. now my question is: was it ok for me to

asked by COFFEE on July 29, 2007
11. ### Calculus

Find the horizontal asymptote of f(x)=e^x - x lim x->infinity (e^x)-x= infinity when it's going towards infinity, shouldn't it equal to negative infinity, since 0-infinity = - infinity lim x-> -infinity (e^x)-x= infinity

asked by sh on December 8, 2010

More Similar Questions