For a scaler field Ο•(x, y, z) = x^n+y^n+z^n, show that (πŸ”»Ο• ).r = nΟ• , where n is a non-zero real constant.

To show that (πŸ”»Ο•).r = nΟ• for the scalar field Ο•(x, y, z) = x^n + y^n + z^n, where n is a non-zero real constant, we need to find the Laplacian of Ο• and then compute the dot product of the gradient of Ο• with the position vector r.

First, let's find the Laplacian of Ο•:
Laplacian of Ο•, (πŸ”»Ο•), is given by:

(πŸ”»Ο•) = (βˆ‚Β²Ο•/βˆ‚xΒ²) + (βˆ‚Β²Ο•/βˆ‚yΒ²) + (βˆ‚Β²Ο•/βˆ‚zΒ²)

To find the second partial derivatives of Ο•, let's differentiate Ο• with respect to each variable separately:

βˆ‚Ο•/βˆ‚x = n*x^(n-1)
βˆ‚Β²Ο•/βˆ‚xΒ² = n(n-1)x^(n-2)

βˆ‚Ο•/βˆ‚y = n*y^(n-1)
βˆ‚Β²Ο•/βˆ‚yΒ² = n(n-1)y^(n-2)

βˆ‚Ο•/βˆ‚z = n*z^(n-1)
βˆ‚Β²Ο•/βˆ‚zΒ² = n(n-1)z^(n-2)

Now, let's add up the second partial derivatives:

(πŸ”»Ο•) = n(n-1)(x^(n-2) + y^(n-2) + z^(n-2))

Next, we calculate the gradient of Ο•, (βˆ‡Ο•):

βˆ‡Ο• = (βˆ‚Ο•/βˆ‚x)i + (βˆ‚Ο•/βˆ‚y)j + (βˆ‚Ο•/βˆ‚z)k
= (n*x^(n-1))i + (n*y^(n-1))j + (n*z^(n-1))k

Finally, let's compute the dot product between (βˆ‡Ο•) and r:

(βˆ‡Ο•) . r = (n*x^(n-1))x + (n*y^(n-1))y + (n*z^(n-1))z
= n*x^n + n*y^n + n*z^n
= nΟ•

So, we have shown that (πŸ”»Ο•).r = nΟ• for the given scalar field.