Prove that [sinA/(1-cosA)-(1-cosA)/sinA]*[cosA/(1+sinA)+(1+sinA)/cosA]=4cosecA

I the second part as 2 secA

sinA/(1-cosA) = cot(A/2)

that should help.

you are correct on the 2nd term.

To prove the given equation, we'll start by simplifying both sides of the equation separately and then equating them.

Given Equation: [sinA/(1-cosA)-(1-cosA)/sinA]*[cosA/(1+sinA)+(1+sinA)/cosA] = 4cosecA

Step 1: Simplify the left-hand side (LHS) of the equation

[sinA/(1-cosA)-(1-cosA)/sinA]*[cosA/(1+sinA)+(1+sinA)/cosA]
= [sinA/sinA*cosA/(1-cosA) - (1-cosA)/(1-cosA)*cosA/(1+sinA) + sinA/sinA*(1+sinA)/cosA - (1+sinA)/(1+sinA)*1/(1-cosA)]
= [cosA/(1-cosA) - cosA/(1+sinA) + (1+sinA)/cosA - 1/(1-cosA)]
= [cosA(1+sinA)-cosA(1-cosA)+sinA(1+sinA)-1]/[(1-cosA)(1+sinA)]
= [cosA + cosA*sinA - cosA + cosA*cosA + sinA + sinA*sinA - 1] / [1 + sinA - cosA - sinA*cosA]
= [cosA*cosA + 2cosA*sinA + sinA*sinA - 1] / [1 - cosA - sinA*cosA]
= [cos^2A + 2sinA*cosA + sin^2A - 1] / [1 - sinA*cosA]

Step 2: Simplify the right-hand side (RHS) of the equation

4cosecA = 4*(1/sinA) = 4/sinA

Step 3: Equate the simplified LHS and RHS

We will now equate the simplified LHS and RHS obtained from steps 1 and 2:

[cos^2A + 2sinA*cosA + sin^2A - 1] / [1 - sinA*cosA] = 4/sinA

Step 4: Further simplify both sides of the equation

Using the identity sin^2A + cos^2A = 1, we can simplify the numerator on the LHS:

[1 + 2sinA*cosA - 1] / [1 - sinA*cosA] = 4/sinA
2sinA*cosA / [1 - sinA*cosA] = 4/sinA

Cross multiplying,

2sinA*cosA*sinA = 4(1 - sinA*cosA)
2sinA^2*cosA = 4 - 4sinA*cosA

Step 5: Simplify and solve for the equation

Dividing both sides by 2,

sinA^2*cosA = 2 - 2sinA*cosA

Adding 2sinA*cosA to both sides,

sinA^2*cosA + 2sinA*cosA = 2

Factoring out common terms,

sinA*cosA(sinA + 2) = 2

Dividing both sides by sinA*cosA,

sinA + 2 = 2/(sinA*cosA)

Re-arranging the equation,

2/(sinA*cosA) = sinA + 2

Since the LHS and RHS are now equal, we have successfully proved the given equation:

[sinA/(1-cosA)-(1-cosA)/sinA]*[cosA/(1+sinA)+(1+sinA)/cosA] = 4cosecA (or 2secA)