For a scaler field Ο•(x, y, z) = x^n+y^n+z^n, show that (πŸ”»Ο• ).r = nΟ• , where n is a non-zero real constant.

To show that (βˆ‡Ο•)Β·r = nΟ•, where Ο•(x, y, z) = xn + yn + zn and n is a non-zero real constant, we need to find the gradient of Ο• and evaluate (βˆ‡Ο•)Β·r.

First, let's find the gradient of Ο•, denoted as βˆ‡Ο•. The gradient is a vector that contains the partial derivatives of the scalar field with respect to each variable (x, y, and z). Each component of the gradient will be a partial derivative of Ο•.

βˆ‡Ο• = (βˆ‚Ο•/βˆ‚x, βˆ‚Ο•/βˆ‚y, βˆ‚Ο•/βˆ‚z)

Finding the partial derivatives:

βˆ‚Ο•/βˆ‚x = n*x^(n-1), βˆ‚Ο•/βˆ‚y = n*y^(n-1), βˆ‚Ο•/βˆ‚z = n*z^(n-1).

Therefore, the gradient of Ο• is:

βˆ‡Ο• = (n*x^(n-1), n*y^(n-1), n*z^(n-1)).

Now, let's calculate the dot product of βˆ‡Ο• and the position vector r = (x, y, z).

(βˆ‡Ο•)Β·r = n*x^(n-1)*x + n*y^(n-1)*y + n*z^(n-1)*z.

Simplifying this expression:

(βˆ‡Ο•)Β·r = n*x^n + n*y^n + n*z^n.

Now, recall the definition of Ο•(x, y, z) = xn + yn + zn. If we substitute this into the equation above, we get:

(βˆ‡Ο•)Β·r = nΟ•.

Therefore, we have shown that (βˆ‡Ο•)Β·r = nΟ• for the given scalar field Ο•(x, y, z) = xn + yn + zn and a non-zero real constant n.