Pre Cal

write the equations of the parabola, the directrix, and the axis of symmetry.

vertex: (-4,2)
focus: (-4,6)

if someone could explain how to do this problem then that would be great! thanks in advance!

Formats to help you find the equation for a parabola:
(x - h)^2 = 4p(y - k)
Vertex = (h, k)
Focus = (h, k + p)
Directrix: y = k - p

You are given the vertex (-4,2) and the focus (-4,6).

Since we know k, which is 2, we can figure out p. Format = (h, k + p) for focus. Therefore, p = 4.

I'll set this up and let you take it from there:
[x - (-4)]^2 = 4(4)(y - 2)

The axis of symmetry is: x = -4 (vertex x-value).

I hope this will help.

good post. mathguru, if you would like to join us here at jiskha as a volunteer teacher, email me at

it did. thanks so much!

Thanks Bob! Just happy to help. :)

  1. 👍
  2. 👎
  3. 👁
  1. x^2=-24y

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. algebra

    Can someone check my answers please and if Im wrong please explain. 1) graph 4x^2+4y^2=64. what are the domain and range? domain;all real numbers range;-4

  2. algebra

    A few more question Id like for someone to check please. 1) what are the vertex, focus, and directrix of the parabola with the given equation? x^2-8x-28y-124=0 vertex (4,-5) focus (0,7) directrix y=-12 2) write an equation of a

  3. Algebra

    An engineer designs a satellite dish with a parabolic cross section. The dish is 10 ft wide at the​ opening, and the focus is placed 8 ft from the vertex. ​a) Position a coordinate system with the origin at the vertex and

  4. Algebra 2

    The equation of a parabola is 12y=(x-1)^2-48. Identify the vertex, focus, and directrix of the parabola.

  1. maths

    Given that the equation of the parabola is 5y^2 + 24x = 0. Find (1)The Axis and vertex of the parabola (ii)The focus and the directrix (iii)The distance from the directrix to the focus

  2. algebra

    6. Find the equation of each parabola described below. a) parabola with vertex (0,0) and the focus (0,7) b) parabola with focus (-3,0) and directrix x=3 c) parabola with vertex (3,3) and directrix x=-1 d) parabola with focus

  3. Math/Algebra

    Find the vertex, Focus,and Directrix of the parabola. Graph the equation. y^2=12x

  4. Algebra

    All parabolas are symmetric with respect to a line called the axis of symmetry. A parabola intersects its axis of symmetry at what point? a. vertex b. function c. translation d. y-intercept Is it A. vertex?

  1. calculus

    write the vertex form equation of each parabola. 1) Vertex:(-5,8), Focus:(-21/4, 8) 2) Vertex:(-6,-9), Directrix: x= 47/8 3)Vertex(8,-1) y- intercept: -17 4) Open left or right, Vertex: (7, 6), passes through:(-11,9)

  2. Algebra2

    Write an equation of a parabola with a vertex at the origin and a directrix at y=-5. my answer is focus 6,0, directrix =-6

  3. math

    Write the equation for a parabola with a focus at (-3,-5)(−3,−5) and a directrix at x=-7

  4. Math

    Find the vertex, focus, and directrix of the parabola. x^2 - 2x + 8y + 9 = 0 x^2 - 2x +1 = -8y + 9+ 1 (x-1)^2 = -8(y-1.25) vertex:(1,1.25) focus:(1,-.75) directrix: y=3.25

You can view more similar questions or ask a new question.