Respond to this Question
Similar Questions

Math
For a certain day,the depth of water,h, in metres in PEI, in hours is given by the formula:h(t) = 7.8sin (pi/6(t3)), t E [0,24], assume t=0 represents midnight. Provide an algebraic solution to determine the time(s) of day, the 
Math
For a certain day, the depth of water, h, in metres in Tofino, B.C at time t, in hours, is given by the formula: h(t)=7.8+3.5sin[pi/6(t3)], tE[0,24]. Assume t=0 represents midnight. Provide an algebraic solution to determine the 
periodic functions(math)
A vessel is crossing a channel. The depth of the water(measured in metres) varies with time and is represented by the following equation: d(t)=2.5sin(0.523t)+2.9 a. create a graph showing the depth of the water over 24 hours. b. 
Math  Trig
The depth of water, h, in metres at time t, in hours, is given by the formula: h(t)=7.8+3.5sin[pi/6(t−3)]. Its a 24 hours period and t=0 is midnight. Provide an algebraic solution to determine the time(s) of day, the water 
Maths
The average depth of the water in a port on a tidal river is 4 m. At low tide, the depth of the water is 2 m. One cycle is completed approx every 12 h. a) find an equation of the depth d(t) metres, with respect to the average 
Trigonometric Functions
The average depth of the water in a port on a tidal river is 4m. At low tide, the depth of the water is 2m. One cycle is completed approximately every 12h. a)Find an equation of the depth, d(t)metres, with respect to the average 
Trig functions
The average depth of the water in a port on a tidal river is 4m. At low tide, the depth of the water is 2m. One cycle is completed approximately every 12h. a)Find an equation of the depth, d(t)metres, with respect to the average 
math please help!!
The depth d of water in a tank oscillates sinusoidally once every 4 hours. If the smallest depth is 7.9 feet and the largest depth is 10.1 feet, find a possible formula for the depth in terms of time t in hours. (Let the water 
math
The cross section of a trough is a trapezoid with the lower base 1 metre, the upper base 2 metres and the depth 1 metre. The length of the trough is 6 metres. If water is poured in at the rate of 12 cubic metres per minute, at 
maths
the volume of water in a tidal pool is given by the formula V = 2cos (3pi/x ) where x is the depth of water in the pool. Find the water at which the depth of the pool will be increasing when the volume in the pool is increasing at