Pre Calculus
 👍
 👎
 👁

 👍
 👎
Respond to this Question
Similar Questions

Calculus
An open box is formed from a piece of cardboard 12 inches square by cutting equal squares out of the corners and turning up the sides, find the dimensions of the largest box that can be made in this way.

math
an open rectangular box is to be formed by cutting identical squares, each of side 2 in, one from each corner of a rectangular piece of cardboard, and then turning up the ends. If the area of the piece of cardboard is 160 in² and

Calculus (Optimization)
A rectangular piece of cardboard, 8 inches by 14 inches, is used to make an open top box by cutting out a small square from each corner and bending up the sides. What size square should be cut from each corner for the box to have

math
an open box is to be formed out of a rectangular piece of cardboard whose length is 8 cm longer than its width to form the box,a square of side 4 cm will be removed from each corner of the cardboard then the edges of the remaining

College Algebra
A rectanguler piece of metal is 5 inches longer than it is wide. Square with sides 1 inches longer are cut from the four corners and the flaps are folded upward to form an open box. If the volume of the box is 644 inches, what are

Math
A rectangular piece of cardboard measuring 12 cm by 18 cm is to be made into a box with an open top by cutting equal size squares from each corner and folding up the sides. Let x represent the length of a side of each square in

Calculus
Squares with sides of length x are cut out of each corner of a rectangular piece of cardboard measuring 3 ft by 4 ft. The resulting piece of cardboard is then folded into a box without a lid. Find the volume of the largest box

Geometry
On a rectangular piece of cardboard with perimeter 11 inches, three parallel and equally spaced creases are made. The cardboard is then folded along the creases to make a rectangular box with open ends. Letting x represent the

Math HELP!!
Chuck needs to cut a piece of cardboard for an art project at school. He has four pieces of cardboard that he can cut from: 6 inches, 5 inches, 7 inches, and 3 inches. If the length of the cardboard he needs is √35 inches, which

algebra
I have a piece of cardboard that is twice as long as it is wide .I f I cut a 1inch by 1inch square from each corner and fold up the resulting flaps ,I get a box with a volume of 40 cubic inches.what are the dimensions of the

MATH
An open box with a square base is to be made from a square piece of cardboard 24 inches on a side by cutting out a square of side x inches from each corner and turning up the sides.Graph V=V(x)

calculus
an open rectangular box is to be made from a piece of cardboard 8 inches wide and 8 inches long by cutting a square from each corner and bending up the sides. a. express the volume of the box as a function of the size x cutout
You can view more similar questions or ask a new question.