
posted by Reiny
Respond to this Question
Similar Questions

Math
1. What are the next two terms of the following sequence? 3, 1, 5, 9... 2. What are the next two terms of the following sequence? 2, 4, 8, 16... 3. What is the common difference of the following arithmetic sequence? 13, 7, 
Math Help!!!
determine whether each sequence is arithmetic or geometric. find the next three terms. 1. 14,19,24,29.... geometric, 34,39,44 arithmetic,32,36,41 arithmetic 34,39,44**** the sequence is nether geometric nor arithmetic 2. 
math
Determine whether each sequence is arithmetic or geometric. Find the next three terms. 1. 14, 19, 24, 29, . . . (1 point) geometric, 34, 39, 44 arithmetic, 32, 36, 41 arithmetic, 34, 39, 44 *** The sequence is neither geometric 
Algebra
Determine whether each sequence is arithmetic or geometric. Find the next three terms. 14, 19, 24, 29, . . . A.geometric, 34, 39, 44 B.arithmetic, 32, 36, 41 C.arithmetic, 34, 39, 44 D.The sequence is neither geometric nor 
algebra 2
An arithmetic progression has 5 terms that have a sum of 200. The sum of the last three terms added to 6 times the sum of the first two terms equals zero. What is the first term? 
7th Grade Math for Steve.. or Ms. Sue
Determine whether each sequence is arithmetic or geometric. Find the next three terms. 1. 14, 19, 24, 29, . . . (1 point) geometric, 34, 39, 44 arithmetic, 32, 36, 41 arithmetic, 34, 39, 44 ** The sequence is neither geometric nor 
arithmetic
1. The first and last term of an A.P are, a and l respectively, show that the sum of nth term from the beginning and nth term from the end is a + l. 2. If mth term of an A.P be 1/n and nth term be 1/m, then show that its mnth term 
arithmetic
1. The first and last term of an A.P are, a and l respectively, show that the sum of nth term from the beginning and nth term from the end is a + l. 2. If mth term of an A.P be 1/n and nth term be 1/m, then show that its mnth term 
arithmetic
In an arithmetic series, the terms of the series are equally spread out. For example, in 1 + 5 + 9 + 13 + 17, consecutive terms are 4 apart. If the first term in an arithmetic series is 3, the last term is 136, and the sum is 
math
The first, the third and the seventh terms of an increasing arithmetic progression are three consecutive terms of a geometric progression. In the first term of the arithmetic progression is 10 find the common difference of the