# physics

A thin rod has a length of 0.25 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.33 rad/s and a moment of inertia of 1.40 10-3 kg · m2. A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (mass = 4.2 10-3 kg) gets where it's going, what is the angular velocity of the rod?

1. 👍
2. 👎
3. 👁
4. ℹ️
5. 🚩
1. Angular momentum after = angular momentum before

angular momentum before
= I w = 1.4*10^-3 * .33
= .462 * 10^-3

angular momentum after =
(1.4*10^-3 + 4.2*10^-3) w

so
w = .462/5.6 = .0835 rad/s

1. 👍
2. 👎
3. ℹ️
4. 🚩

## Similar Questions

1. ### Physics

A thin uniform rod has a length of 0.550 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.4

2. ### physics help!

A small 520-gram ball on the end of a thin, light rod is rotated in a horizontal circle of radius 1.5 m. Calculate the moment of inertia of the ball about the center of the circle. Then calculate the torque needed to keep the ball

3. ### AP PHYSICS MECH.

Need help urgent!!! A system consist of a ball of M2 and a uniform rod of M1 and length d. The rod is attached to a horizontal frictionless rotates at an angular speed w, as shown in the figure. The rotational inertia of the rod

4. ### physics

A uniform thin rod of length 0.55 m and mass 5.5 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is a rest when a 3.0-g bullet traveling in the horizontal plane of the rod is fired into one

One end of a thin rod is attached to a pivot, about which it can rotate without friction. Air resistance is absent. The rod has a length of 0.59 m and is uniform. It is hanging vertically straight downward. The end of the rod

2. ### Physics

Consider a thin 22 m rod pivoted at one end. A uniform density spherical object (whose mass is 1 kg and radius is 4.8 m) is attached to the free end of the rod. The moment of inertia of the rod about an end is I-rod=1/3m L^2.The

3. ### Physics

A uniform rod of length L and mass M is held vertically with one end resting on the floor as shown below. When the rod is released, it rotates around its lower end until it hits the floor. Assuming the lower end of the rod does

4. ### Physics

A thin rod, of length L and negligible mass, that can pivot about one end to rotate in a vertical circle. A heavy ball of mass m is attached to the other end. The rod is pulled aside through an angle and released. What is the

1. ### AP Physics

A uniform thin rod of length 0.3m and mass 3.5kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3g bullet traveling in the horizontal plane of the rod is fired into one end of

2. ### physics 1

A long, thin rod with moment of inertia I=2 kg•m2 is free to rotate about an axis passing through the midpoint of the rod. The rod begins rotating from rest at time t= 0 s, accelerating constantly so that it has a rotational

3. ### physics

A thin uniform rod is rotating at an angular velocity of 6.7 rad/s about an axis that is perpendicular to the rod at its center. As the drawing indicates, the rod is hinged at two places, one-quarter of the length from each end.

4. ### physics

A light rigid rod 1.00 m in length joins two particles, with masses 4.00 kg and 3.00 kg, at its ends. The combination rotates in the xy plane about a pivot through the center of the rod. Determine the angluar momentum of the