Respond to this Question
Similar Questions

math
Prove that if A is a symmetric n x n matrix, then A has a set of n orthonormal eigenvectors. http://ltcconline.net/greenl/courses/203/MatrixOnVectors/symmetricMatrices.htm I've read the entire page and while it's on the correct
asked by mathstudent on January 19, 2007 
Math Elementary Linear Algebra
determine whether or not the given set forms a basis for the indicated subspace: #1 {1,1,0), (1,1,1)} for the subspace of R^3 of all (x,y,z) such that y= x+z #2 {[1,2,1,3), (0,0,0,0)} for the subspace of R^4 of all vectors of the
asked by Anna on November 16, 2014 
Algebra
How would you prove this theorem: The column space of an m x n matrix A is a subspace of R^m by using this definition: A subspace of a vector space V is a subset H of V that has three properties: a) the zero vector of V is in H.
asked by Min on June 19, 2007 
math
There is one step in a proof that I don't understand. Could someone please explain? u = any vector in vector space S W = finite dimensional subspace of S with orthonormal basis of vectors {v1, v2, ..., vn} The theorem to prove is:
asked by mathstudent on January 5, 2007 
Linear Algebra
1/ Prove that the set V=R+ ( the set of all positive real numbers) is a vector space with the following nonstandard operations: for any x,y belong to R+ & for any scalar c belong to R: x O+ ( +signal into circle) y=x.y (definition
asked by Tri N on March 6, 2011 
linear algebra
Show that a subset W of a vector space V is a subspace of V if and only if the following condition holds: If u and v are any vectors in W and a and b are any scalars, then au + bv is in W.
asked by chris on July 11, 2007 
Math
Let V and W be vector spaces and assume that T be a linear mapping from V to W. (a) Show that ker(T) is a subspace of V . (b) Show that range(T) is a subspace of W.
asked by Usman on November 19, 2016 
Linear Algebra
V = Mnxn is a space vector formed by all the square matrices. Is W = {A in Mnxn : A^x = A} a subspace of V? Thanks
asked by Isaac on May 1, 2009 
Math
Went ahead and did the HW the teach recommended but she did not post the answers and I would like to see if im on the right track. Problem 1: Are the vectors (2,−1,−3), (3, 0,−2), (1, 1,−4) linearly independent? Problem 2
asked by John Rose on May 11, 2013 
Math
1. P5 is an innerproduct space with an inner product. We applied the Gram Schmidt process tot he basis {1,x,x^2,x^3,x^4} and obtained the following as the result {f1,f2,f3,f4,x^4+2}. a. What is the orthogonal complement of P3 in
asked by Scott on April 13, 2012