Proof that :- cot²A/(cosec A + 1)=1-sin A/1+sin A.

To prove the given identity, let's manipulate each side of the equation separately and then equate them.

Starting with the left side of the equation:
cot²A / (cosec A + 1)

To work with the left-hand side (LHS), we need to express cot A and cosec A in terms of sin A and cos A using the fundamental trigonometric identities:

1. cot A = cos A / sin A
2. cosec A = 1 / sin A

Substituting these values into the LHS:

(cot² A) / (cosec A + 1)
= (cos² A / sin² A) / (1 / sin A + 1)
= (cos² A / sin² A) / (1 / sin A + sin A / sin A)
= (cos² A / sin² A) / ((1 + sin A) / sin A)
= cos² A / sin² A * sin A / (1 + sin A)
= (cos² A * sin A) / (sin² A * (1 + sin A))

Simplifying further, we get:

(cos² A * sin A) / (sin² A * (1 + sin A))
= [(cos A * sin A) * cos A] / [(sin A * sin A) * (1 + sin A)]
= (cos A * sin A * cos A) / (sin A * sin³ A * (1 + sin A))
= (cos A * cos A) / (sin A * sin² A * (1 + sin A))
= cos² A / (sin² A * (1 + sin A))

Now, let's work on the right side of the equation:
1 - sin A / (1 + sin A)

Combining the fractions, we get:

[(1 * (1 + sin A) - sin A)] / (1 + sin A)
= [1 + sin A - sin A] / (1 + sin A)
= 1 / (1 + sin A)

So, the right-hand side (RHS) becomes:

1 / (1 + sin A)

Now, we need to prove that the LHS = RHS, which means we need to show that:

(cos² A) / (sin² A * (1 + sin A)) = 1 / (1 + sin A)

To prove this, we can start by cross-multiplying:

(cos² A) * (1 + sin A) = sin² A * (1 + sin A) * 1

Expanding both sides:

cos² A + cos² A * sin A = sin² A + sin³ A

Moving all terms to one side:

sin³ A + cos² A * sin A - sin² A - cos² A = 0

Factoring out sin A from the first two terms:

sin A * (sin² A + cos² A) + cos² A * sin A - sin² A - cos² A = 0

Using the identity sin² A + cos² A = 1:

sin A * 1 + cos² A * sin A - sin² A - cos² A = 0

Simplifying:

sin A + cos² A * sin A - sin² A - cos² A = 0

Pulling out common factors:

sin A * (1 + cos² A) - (1 + cos² A) = 0

(1 + cos² A) is a common factor:

(1 + cos² A)(sin A - 1) = 0

Therefore, either (1 + cos² A) = 0 or (sin A - 1) = 0.

Since (1 + cos² A) cannot be zero for any real values of A, we can disregard that solution.

Hence, we are left with sin A - 1 = 0, which simplifies to sin A = 1.

However, sin A cannot be equal to 1 for any real values of A.

Therefore, the equation (cos² A) / (sin² A * (1 + sin A)) = 1 / (1 + sin A) is not a valid identity.

Hence, the original statement is not true.