# Math- Fourier series

Evaluate the formula for cn in Fourier :integral of e^kx dx = e^kx /k :unless k=0: Type your formula for c0 and cn (n>0) into the indicated spaces.

Then rewrite the Fourier series in terms of sines and cosines. Simplify as far as possible (eliminate the zero terms).

## Similar Questions

1. ### Math- Fourier series

Evaluate the formula for cn in Fourier :integral of e^kx dx = e^kx /k :unless k=0: Type your formula for c0 and cn (n>0) into the indicated spaces. Then rewrite the Fourier series in terms of sines and cosines. Simplify as far
2. ### Math- Fourier series

Evaluate the formula for cn in Fourier :integral of e^kx dx = e^kx /k :unless k=0: Type your formula for c0 and cn (n>0) into the indicated spaces. Then rewrite the Fourier series in terms of sines and cosines. Simplify as far
3. ### Math (College Level Mathematics)

Fourier sin series for f(x) = 1, 0 < x < Pie is given by 1 = 4/n E 1/ (2n-1) times sin (2n-1) x, (0 < x < n). Using this, find the Fourier sinc series for f(x)= 1, on 0 < x < c where c > 0. Then find the
4. ### Math, Fourier Series

For Fourier Series of f(x)=sin|x| which is an even function, bn should be 0. However, I solved that b1=1 while the rest of the terms =0, meaning bn=0. Is there a mistake?"
5. ### Math (Fourier)

I want to self-study Fourier Transforms followed by signal analysis and Wavelets. I am considering buying the books: "Fourier Analysis: An Introduction" and "A First Course in Fourier Analysis". My question is, are these at my
6. ### Fourier Sine Series Q

I have the function f(x) = cos(x) on the interval from 0 to pi and I need to comput the Fourier sine series. I have the integral of cos(x) multiplied by sin(nx), I can't figure out a way to integrate them! The "n" gets in the way,
7. ### math

The Fourier series expansion for the periodic function,f(t) = |sin t|is defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series approximation of f(t), up to the 6th harmonics when t = 1.09.
8. ### math

The Fourier series expansion for the periodic function,f(t) = |sin t|is defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series approximation of f(t), up to the 6th harmonics when t = 1.09.
9. ### math

Anyone can help me on this qns? The Fourier series expansion for the periodic function,f(t) = |sin t|is defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series approximation of f(t), up to
10. ### Fourier Series

A periodic function f(t), with period 2π is defined as,f(t) = c for 0 < t < πf(t) = -c for -π < t < 0where c = 1.4, Taking π = 3.142, calculate the Fourier sine series approximation up to the 5th

More Similar Questions