Physics

A block of mass m = 2.00 kg is released from rest h = 0.500 m from the surface of a table, at the top of a theta = 30.0° incline. The frictionless incline is fixed on a table of height H = 2.00 m. (a) Determine the acceleration of the block as it slides down the incline. (b) What is the velocity of the block as it leaves the incline? (c) How far from the table will the block hit the floor? (d) How much time has elapsed between when the block is released and when it hits the floor? (e) Does the mass of the block affect any of the above calculations?

Thank you!!

  1. 👍
  2. 👎
  3. 👁
  1. a) mgsin30 = ma
    a = 9.8sin30
    b) mgh = 1/2 mv^2
    v = sqrt(2*9.8*.5)
    c) t = sqrt( 2 (2))/9.8)
    x = v (part b) * t (part c)
    d) find time on slide by finding hypontenuse distance and a from part a. Add to time from c
    e) Nope

    1. 👍
    2. 👎
  2. good but answer with explanation

    1. 👍
    2. 👎

Respond to this Question

First Name

Your Response

Similar Questions

  1. physics

    A small block with mass 0.200 kg is released from rest at the top of a frictionless incline. The block travels a distance 0.440 m down the incline in 2.00 s. The 0.200 kg block is replaced by a 0.400 kg block. If the 0.400 kg

  2. physics

    In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the

  3. physics

    a block of mass 3 kg rests on a smooth table and connected to another block of mass 2 kg, after passing over and ideal pulley, the block of mass 2 kg is released. how long does it take the block to travel 80 cm

  4. Physics.

    A 500 g block lies on a horizontal tabletop. The coefficient of kinetic friction between the block and the surface is 0.25. The block is connected by a massless string to the second block with a mass of 300 g. The string passes

  1. physics

    The 100 kg block in figure takes 7.00s to reach the floor after being released from rest. What is the mass of the block on the left?

  2. Physics 121

    Two block are connected by a rope that runs over a pulley. The block on the tables has mass 4kg, the hanging block has mass 2kg, and the pulley has mass 0.5kg and radius 0.25m. Assume that the table is friction-less. If the block

  3. AP physics

    On Block has a mass M=500 g, the other has mass m=460 g, they are hooked to a string and is on a pulley will one mass on either side, the pulley, which is mounted in horizontal frictionless bearings, has a radius of 5 cm. When

  4. Physics 121

    Two block are connected by a rope that runs over a pulley. The block on the tables has mass 4kg, the hanging block has mass 2kg, and the pulley has mass 0.5kg and radius 0.25m. Assume that the table is friction-less. If the block

  1. Physics- springs

    Block A has a mass 1.00kg, and block B has a mass 3.00 kg. the blocks are forced together, compressing a spring S between them; then the system is released from rest on a level, frictionless surface. The spring which egligible

  2. Physics

    a block of mass m=10kg is released from rest on a frictionless incline of angle=30°. Theass can be compressed 2.0cn by a force of 200N. The block momentarily stops when it compresses the spring by 5cm.. How far does fge block

  3. Physics

    A block of mass m1 = 4.1 kg rests on a frictionless horizontal surface. A second block of mass m2 = 1.7 kg hangs from an ideal cord of negligible mass that runs over an ideal pulley and then is connected to the first block. The

  4. physics

    block 1 has mass m1 = 480 g, block 2 has mass m2 = 540 g, and the pulley is on a frictionless horizontal axle and has radius R = 5.2 cm. When released from rest, block 2 falls 76 cm in 5.2 s (without the cord slipping on the

You can view more similar questions or ask a new question.