Physics

A block of mass m = 2.00 kg is released from rest h = 0.500 m from the surface of a table, at the top of a theta = 30.0° incline. The frictionless incline is fixed on a table of height H = 2.00 m. (a) Determine the acceleration of the block as it slides down the incline. (b) What is the velocity of the block as it leaves the incline? (c) How far from the table will the block hit the floor? (d) How much time has elapsed between when the block is released and when it hits the floor? (e) Does the mass of the block affect any of the above calculations?

Thank you!!

  1. 👍 0
  2. 👎 0
  3. 👁 1,898
  1. a) mgsin30 = ma
    a = 9.8sin30
    b) mgh = 1/2 mv^2
    v = sqrt(2*9.8*.5)
    c) t = sqrt( 2 (2))/9.8)
    x = v (part b) * t (part c)
    d) find time on slide by finding hypontenuse distance and a from part a. Add to time from c
    e) Nope

    1. 👍 1
    2. 👎 4
  2. good but answer with explanation

    1. 👍 0
    2. 👎 0

Respond to this Question

First Name

Your Response

Similar Questions

  1. physics

    In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the

    asked by chirayu on March 23, 2009
  2. physics

    A light spring with force constant 3.85 N/m is compressed by 5.00 cm as it is held between a 0.250 kg block on the left and a 0.500 kg block on the right, both resting on a horizontal surface. The spring exerts a force on each

    asked by Jessi on February 24, 2009
  3. Physics

    In an Atwood machine, one block has a mass of M1 = 520 g and the other has a mass of M2 = 320 g. The frictionless pulley has a radius of 4.6 cm. When released from rest, the heavier block moves down 51 cm in 1.00 s (no slippage).

    asked by Morgan on November 5, 2011
  4. physics

    a block of mass 3 kg rests on a smooth table and connected to another block of mass 2 kg, after passing over and ideal pulley, the block of mass 2 kg is released. how long does it take the block to travel 80 cm

    asked by n on August 12, 2014
  5. physics

    A 3 kg block (block A) is released from rest at the top of a 20 m long frictionless ramp that is 5 m high. At the same time, an identical block (block B) is released next to the ramp so that it drops straight down the same 5 m.

    asked by Katelyn on November 2, 2016
  1. physics

    A small block with mass 0.200 kg is released from rest at the top of a frictionless incline. The block travels a distance 0.440 m down the incline in 2.00 s. The 0.200 kg block is replaced by a 0.400 kg block. If the 0.400 kg

    asked by Dontrielle on February 2, 2015
  2. Physics- springs

    Block A has a mass 1.00kg, and block B has a mass 3.00 kg. the blocks are forced together, compressing a spring S between them; then the system is released from rest on a level, frictionless surface. The spring which egligible

    asked by David E. on April 25, 2012
  3. physics

    As shown in the figure, a block of mass M1 = 0.470 kg is initially at rest on a slab of mass M2 = 0.850 kg, and the slab is initially at rest on a level table. A string of negligible mass is connected to the slab, runs over a

    asked by Jimmy on October 17, 2011
  4. physics

    Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string of negligible mass as shown in the figure. The pulley is frictionless and has a negligible mass. If the coefficient of kinetic friction between block A and

    asked by Diane on November 30, 2012
  5. physics

    Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string of negligible mass as shown in the figure. The pulley is frictionless and has a negligible mass. If the coefficient of kinetic friction between block A and

    asked by Diego on November 30, 2012

You can view more similar questions or ask a new question.