Mathematics

Solve for X:

(x-6)log4=(3x)log2

  1. 👍 0
  2. 👎 0
  3. 👁 193
  1. (x-6)*Log4 = 3x*Log2.
    Divide by Log4:
    x-6 = 3x*Log2/Log4.
    x-6 = 3x*0.5 = 1.5x.
    x-1.5x = 6.
    -0.5x = 6.
    X = -12.

    1. 👍 0
    2. 👎 0

Respond to this Question

First Name

Your Response

Similar Questions

  1. calculus

    1.find the zeroes of the function f(x)=log4(x+1)+log4(4x-3) 2.which of the following is the equation c^(4d+1)=7a-b written in logarithm form

  2. pre-calculus-check over work

    1). change to exponential form: log2^256=8; 2^8=256 log0.0001=-4; 10^-4=0.0001 2). change to logarithmic form: 5^3=125; log5^125=3 4^-3=1/64; log4^1/64=-3 3). solve the equation: 3^(x-2)=27^(x+1) 3^(x-2)=(3^3)^(x+1)

  3. precalc

    Solve the logarithmic equation for x. (Enter your answers as a comma-separated list.) log2(x + 17) − log2(x − 2) = 1 2 is the base for the log.

  4. trig

    solve for x log4 64+ log2 2 ________________ =x log3 81

  1. add maths

    Given that log2 3=h and log2 5=k, express log2 0.45 in terms of h and k.

  2. Mathematics

    Solve for x if I: Log2(x²-2x+5)=2 ii: Log 3(x²+2x+2)=0

  3. mathematics

    solve :log (12x-10)=1+log2(4x+3)

  4. Math

    log2√36 - log2√72 I am not sure how to do this question. I need an explanation.

  1. math/algebra

    solve the equation log2(3x-2) - log2 (x-5)=4

  2. Algebra II

    Please check answers: Use the equation of the exponential function whose graph passes through the points (0,-2) and (2,-50) to find the value of y when x= -2. My answer: -2/25 Solve 64^x/=5/2 Thanks.

  3. Math - Logarithmic

    Solve: 2^(5x-6) = 7 My work: log^(5x-6) = log7 5x - 6(log2) = log7 5x = log7 + 6(log2) x = (log7 + log2^6) / 5 And textbook answer: (log7) / (log2) What did I do wrong?

  4. maths

    solve log2(x+1)-log2x=2

You can view more similar questions or ask a new question.