# physics

A water-skier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 83.0-kg water-skier has an initial speed of 5.9 m/s. Later, the speed increases to 11.4 m/s. Determine the work done by the net external force acting on the skier.

1. 0
2. 0
3. 2
1. Well, we can get the change in kinetic energy which is the net work done. This is greatly simplified because most of the actual (not net) work done by the tow boat is wasted in wave and frictional drag: (Thrust - Drag = net force = m a)

Work = (1/2)(83)(11.4^2 - 5.9^2)

1. 0
2. 0
posted by Damon

## Similar Questions

1. ### college physics

a water skier is being pulled by a tow rope attached to a boat. as the driver pushes the throttle forward,the skier accelerates. a 70.3kg water skier has an initial speed of 6.10m\s. determine the work done by the net external
2. ### Physics

A water-skier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 73.0-kg water-skier has an initial speed of 7.1 m/s. Later, the speed increases to 10.9 m/s.
3. ### physics

A water-skier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 71.6-kg water-skier has an initial speed of 5.8 m/s. Later, the speed increases to 11.8 m/s.
4. ### physics

A water-skier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 65.6-kg water-skier has an initial speed of 5.2 m/s. Later, the speed increases to 11.9 m/s.
5. ### Physics

A water-skier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 63.6-kg water-skier has an initial speed of 5.3 m/s. Later, the speed increases to 10.8 m/s.

A water-skier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 83.9-kg water-skier has an initial speed of 6.3 m/s. Later, the speed increases to 10.1 m/s.
7. ### Physics

A water skier, moving at a speed of 8.36 m/s, is being pulled by a tow rope that makes an angle of 33.4 ° with respect to the velocity of the boat (see the drawing). The tow rope is parallel to the water. The skier is moving in
8. ### physics

A water skier, moving at a speed of 6.42 m/s, is being pulled by a tow rope that makes an angle of 39.7 ° with respect to the velocity of the boat (see the drawing). The tow rope is parallel to the water. The skier is moving in
9. ### AP physics

A water skier, moving at a speed of 8.61 m/s, is being pulled by a tow rope that makes an angle of 34.9 ° with respect to the velocity of the boat. The tow rope is parallel to the water. The skier is moving in the same direction
10. ### Physics

A 68-kg water skier is being pulled by a nylon (Young's modulus 3.7 x 109 N/m2) tow rope that is attached to a boat. The unstretched length of the rope is 15 m and its cross-section area is 1.8 x 10-5 m2. As the skier moves, a

More Similar Questions