Algebra
 👍 0
 👎 0
 👁 423

 👍 0
 👎 0
Respond to this Question
Similar Questions

calculus
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 14 in. long and 6 in. wide, find the dimensions of the box

Calculus
Squares with sides of length x are cut out of each corner of a rectangular piece of cardboard measuring 3 ft by 4 ft. The resulting piece of cardboard is then folded into a box without a lid. Find the volume of the largest box

Algebra
A box with no top is to be constructed from a piece of cardboard whose length measures 6 inch more than its width. The box is to be formed by cutting squares that measure 2 inches on each side from the four corners an then folding

Math
A rectangular piece of cardboard measuring 12 cm by 18 cm is to be made into a box with an open top by cutting equal size squares from each corner and folding up the sides. Let x represent the length of a side of each square in

math
an open box is to be formed out of a rectangular piece of cardboard whose length is 8 cm longer than its width to form the box,a square of side 4 cm will be removed from each corner of the cardboard then the edges of the remaining

math
an open rectangular box is to be formed by cutting identical squares, each of side 2 in, one from each corner of a rectangular piece of cardboard, and then turning up the ends. If the area of the piece of cardboard is 160 in² and

Geometry
On a rectangular piece of cardboard with perimeter 11 inches, three parallel and equally spaced creases are made. The cardboard is then folded along the creases to make a rectangular box with open ends. Letting x represent the

math
An open box is made from a rectangular piece of cardboard measuring 16 cm by 10cm. Four equal squares are to be cut from each corner and flaps folded up. Find the length of the side of the square which makes the volume of the box

math
A box with a square base and no top is to be made from a square piece of cardboard by cutting 4in. squares from each corner and folding up the sides, as shown in the figure. The box is to hold 324 in3. How big a piece of

Precalculus
From a rectangular piece of cardboard having dimensions a × b, where a = 40 inches and b = 70 inches, an open box is to be made by cutting out an identical square of area x2 from each corner and turning up the sides (see the

Calculus
Squares with sides of length x are cut out of each corner of a rectangular piece of cardboard measuring 3 ft by 4 ft. The resulting piece of cardboard is then folded into a box without a lid. Find the volume of the largest box

Math
On a rectangular piece of cardboard with perimeter 19 inches, three parallel and equally spaced creases are made. The cardboard is then folded along the creases to make a rectangular box with open ends. Letting x represent the
You can view more similar questions or ask a new question.