Related Rates Calculus
A man 1.8 m tall is walking at a rate of 1.5 m/s away from a streetlight. It is found that the length of his shadow is increasing at a rate of 0.9 m/s. How high above the ground is the streetlight?
asked by
Sisi

If the man's distance is x, and the shadow's length is s, and the light is at height h, then using similar triangles,
1.8/s = h/(x+s)
or,
1.8x + 1.8s = hs
1.8x = s(h1.8)
1.9 dx/dt = (h1.8) ds/dt
Now plug in your numbers and solve for h.posted by Steve

Thank you so so much!:)
posted by Sisi
Respond to this Question
Similar Questions

Calculus AB
There's these two word problems I don't understand. 1. A man 6 ft tall walks at a rate of 5 ft per second toward a streetlight that is 30 feet high. The man's 3foottall child follows at the same speed, but 10 feet behind the 
Calculus ~ Related Rates
A man 2 meters tall walks at the rate of 2 meters per second toward a streetlight that's 5 meters above the ground. At what rate is the tip of his shadow moving?We've already set this up part of the way. We know that dx/dt =  2 
calculus
A person 150cm tall is walking away from a lamp post at the rate of 15 meter per minute. when the man is 2.5m from the lamp post, his shadow is 3m long. Find the rate at which the length of the shadow is increasing when he is 7m 
Calculus
A 6 feet tall man walks away from a streetlight that is 15 feet high at a rate of 5 ft/s. Express the length 's' of his shadow as a function of time. What I have so far: I set up a triangle and used similar triangles to create a 
physics
A man 2 m tall is walking away from a lamppost which is 6m tall at a rate of 2 m/s. Find the rate of change of a)the tip of the shadow b) the length of his shadow 
Math
a man 6ft tall walks at the rate of 5ft/sec toward a streetlight that is 16ft above the ground. At what rate is the length of his shadow changing when he is 10ft from the base of the light? 
calculus
A woman 5.5 ft tall walks at a rate of 6 ft/sec toward a streetlight that is 22 ft above the ground. At what rate is the length of her shadow changing when she is 15 ft from the base of the light? 
Calculus rates
A man 6ft. tall walks at the rate of 5 ft/sec toward a streelight that is 16 ft. above the ground. At what rate is the length of his shadow changing when he is 10ft. from the base of the light? 
AP Calculus AB
Hello! I'm having trouble with this related rates problem: A 5ft tall person is walking away from a 16ft tall lamppost at a rate of (2/x) ft/sec, where x is the distance from the person to the lamppost. Assume the scenario can be 
Calculus
A light is hung 15 ft above a straight horizontal path. If a man 6 ft tall is walking away from the light at the rate of 5 ft/sec, how fast is his shadow lengthening and at what rate is the tip of the manâ€™s shadow moving?