# a math

Prove cotx-1/cotx+1 = sec2x - tan2x

I prove till cotx-1/cotx+1 =1/1+tanx - tanx/1+tanx

1. 👍
2. 👎
3. 👁
1. For this to work you must mean
(cotx-1)/(cotx+1) = sec(2x) - tan(2x)

LS = (cosx/sinx - 1)/(cosx/sinx +1)
multiply top and bottom by sinx
= (cosx - sinx)/(cosx + sinx)

RS = 1/cos(2x) - sin(2x)/cos(2x)
= (1 - 2sinxcosx)/(cos^2 x - sin^2 x)
= (sin^2 x + cos^2 x - 2sinxcosx)/((cosx+sinx)(cosx-sinx))
= (sinx - cosx)^2/( (cosx+sinx)(cosx-sinx))
= (sinx - cosx)/(cosx + sinx)
= LS

1. 👍
2. 👎

## Similar Questions

Prove that cscx / cosx = tanx + cotx

Which of the following are identities? Check all that apply. (Points : 2) sin2x = 1 - cos2x sin2x - cos2x = 1 tan2x = 1 + sec2x cot2x = csc2x - 1 Question 4. 4. Which of the following equations are identities? Check all that

3. ### Pre-calculus

Prove the following identities. 1. 1+cosx/1-cosx = secx + 1/secx -1 2. (tanx + cotx)^2=sec^2x csc^2x 3. cos(x+y) cos(x-y)= cos^2x - sin^2y

4. ### trignometry

tanx+cotx=5 than find the value of tan^2x+cot^2x

1. ### trigonometry

Prove cotx-1/cotx+1=1-sin2x/cos2x

2. ### Math

1)A piano tuner uses a tuning fork. If middle C has a frequency of 264 vibrations per second, write an equation in the form d=sinw(t) for the simple harmonic motion. 2) Verify the identity tan^2X-cot^2X/tanX+cotX=tanX-cotX I'm not

3. ### maths

Prove the following trigonometric identities (i)(1+cotx)^2 +(1-cotx)^2=2cosec^2x (ii)cos(270degrees+theta)/cos(360degrees -theta)

4. ### Calculus

Prove the identity cscx+cotx-1/cotx-cscx+1 = 1+cosx/sinx

1. ### college trigonometry

verify identity: (tanx-cotx)/sinxcosx=sec^2x csc^2x

2. ### arithmetic

if tanx+cotx=2 then the value of tan^5x + cot^10x is

3. ### math

sin2x-cotx = -cotxcos2x Using the various trigonometric identities(i.e. double angle formulas, power reducing formulas, half angle formulas, quotient identities, etc.) verify the identity. I first added cotx to both sides to get

4. ### MATHS 2

If x+y=45°, prove that {(cotx+1)(coty+1)}/{cotx×coty}=2 Please help me in this TRIGONOMETRY problem. From the topic - TRIGONOMETRY Ratios of compound angles