Calculus

Consider the function f(x)=sin(1/x)

Find a sequence of x-values that approach 0 such that

(1) sin (1/x)=0 {Hint: Use the fact that sin(pi) = sin(2pi)=sin(3pi)=...=sin(npi)=0}
(2) sin (1/x)=1 {Hint: Use the fact that sin(npi)/2)=1 if n= 1,5,9...}
(3) sin (1/x)=-1
(4) Explain why your answers to any of parts(1-3) show that lim X->0 sin(1/x) does not exist.


Is sin sin (1/x)=0 and sin (1/x)=-1 does not exist.

What is sin (1/x)=1 then.

  1. šŸ‘ 0
  2. šŸ‘Ž 0
  3. šŸ‘ 98
asked by George
  1. plz answer

    1. šŸ‘ 0
    2. šŸ‘Ž 0
    posted by matematicas

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    Consider the function f(x)=sin(1/x) Find a sequence of x-values that approach 0 such that sin (1/x)=0 sin (1/x)=1 sin (1/x)=-1 Is sin sin (1/x)=0 and sin (1/x)=-1 does not exist. What is sin (1/x)=1 then. How would I show the

    asked by George on September 8, 2008
  2. Calculus

    Consider the function f(x)=sin(1/x) Find a sequence of x-values that approach 0 such that sin (1/x)=0 sin (1/x)=1 sin (1/x)=-1 Is sin sin (1/x)=0 and sin (1/x)=-1 does not exist. What is sin (1/x)=1 then.

    asked by George on September 8, 2008
  3. Calculus

    Consider the function f(x)=sin(1/x) Find a sequence of x-values that approach 0 such that (1) sin (1/x)=0 {Hint: Use the fact that sin(pi) = sin(2pi)=sin(3pi)=...=sin(npi)=0} (2) sin (1/x)=1 {Hint: Use the fact that sin(npi)/2)=1

    asked by George on September 9, 2008
  4. Calculus

    Hello, Could somebody kindly check my answer for the following question? Find the derivative of the following function: h(x)=3e^(sin(x+2)) h'(x)=3'(e^(sin(x+2))+3(e^(sin(x+2))' h'(x)=0(e^(sin(x+2))+3(e^(sin(x+2))(cos(1))

    asked by Constantine on August 18, 2015
  5. math

    Eliminate the parameter (What does that mean?) and write a rectangular equation for (could it be [t^2 + 3][2t]?) x= t^2 + 3 y = 2t Without a calculator (how can I do that?), determine the exact value of each expression. cos(Sin^-1

    asked by Anonymous on August 3, 2007
  6. math

    I'm trying to find the convolution f*g where f(t)=g(t)=sin(t). I set up the integral and proceed to do integration by parts twice, but it keeps working out to 0=0 or sin(t)=sin(t). How am I supposed to approach it? integral

    asked by chuck on December 3, 2009
  7. calculus

    In electrical engineering, a continuous function like f(t)=sin(t), where t is in seconds, is referred to as an analog signal. To digitize the signal, we sample f(t) every āˆ†t seconds to form the sequence Sn= f(nāˆ†t). For

    asked by Sam on March 19, 2017
  8. MATH

    1.)Find the exact solution algebriacally, if possible: (PLEASE SHOW ALL STEPS) sin 2x - sin x = 0 2.) GIVEN: sin u = 3/5, 0 < u < ĆÆ/2 Find the exact values of: sin 2u, cos 2u and tan 2u using the double-angle formulas. 3.)Use the

    asked by MAKITA on April 10, 2009
  9. TRIG!

    Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6 x=1 - (3/4)sin^2 2x work on one side only! Responses Trig please help! - Reiny, Monday, February 23, 2009 at 4:27pm LS looks like the sum of cubes sin^6 x +

    asked by hayden on February 23, 2009
  10. Math - Linear Approximation

    a) Find a linear approximation of y=sinx at x=pi/6 b) use part (a) to approximate sin(61pi/360) and sin(59pi/360) I just really have no idea how to approach this problem. I know the formula is y=f(a)+f'(a)(x-a). Does that mean it

    asked by Jamie on March 2, 2017

More Similar Questions