
u = arcsec(x)
x = sec(u)
dx = secu tanu du
the integrand now becomes
u secu tanu du
Now use integration by parts and it's a cinch.
If still stuck, just google it and I'm sure you can find lots of detailed solutions.posted by Steve
Respond to this Question
Similar Questions

math
How do I derive the secant reduction rule? Integral (sec x)^n dx = Integral (sec x)^(n2) * (sec x)^2 dx = Integral ((tan x)^2 + 1)^(n/21) * (sec x)^2 dx Doing a substitution with: u = tax x du = (sec x)^2 dx = Integral (u^2 + 
calculus
Use integration by parts to evaluate the integral of x*sec^2(3x). My answer is ([x*tan(3x)]/3)[ln(sec(3x))/9] but it's incorrect. u=x dv=sec^2(3x)dx du=dx v=(1/3)tan(3x) [xtan(3x)]/3  integral of(1/3)tan(3x)dx  
Calculus  Integration
Hello! I really don't think I am understanding my calc hw. Please help me fix my errors. Thank you! 1. integral from 0 to pi/4 of (tanx^2)(secx^4)dx It says u = tan x to substitute So if I use u = tan x, then my du = secx^2 then I 
Calc
Hello im trying to integrate tan^3 dx i have solved out the whole thing but it doesnt match up with the solution.. this is what i did: first i broke it up into: integral tan^2x (tanx) dx integral (sec^2x1)(tanx) dx then i did a u 
Calc
Hello im trying to integrate tan^3 dx i have solved out the whole thing but it doesnt match up with the solution.. this is what i did: first i broke it up into: integral tan^2x (tanx) dx integral (sec^2x1)(tanx) dx then i did a u 
Calculus  Integrals
I have 3 questions, and I cannot find method that actually solves them. 1) Integral [(4s+4)/([s^2+1]*([S1]^3))] 2) Integral [ 2*sqrt[(1+cosx)/2]] 3) Integral [ 20*(sec(x))^4 Thanks in advance. 
Calculus  Integrals
I have 3 questions, and I cannot find method that actually solves them. 1) Integral [(4s+4)/([s^2+1]*([S1]^3))] 2) Integral [ 2*sqrt[(1+cosx)/2]] 3) Integral [ 20*(sec(x))^4 Thanks in advance. 
calculus
The problem is to evaluate the integral 10secxtanx dx, from 1/7 pi to 3/8 pi. What I've done so far is evaluated the integral since secxtanx is a trig identity, so the integral of that is secx. I took out the 10 since it was a 
Calculus
Evaluate the indefinite integral integral sec(t/2) dt= a)ln sec t +tan t +C b)ln sec (t/2) +tan (t/2) +C c)2tan^2 (t/2)+C d)2ln cos(t/2) +C e)2ln sec (t/2)+tan (t/2) +C 
Calculus problem
Evaulate: integral 3x (sinx/cos^4x) dx I think it's sec3 x , but that from using a piece of software, so you'll have to verify that. Using uppercase 's' for the integral sign we have S 3sin(x)/cos4dx or S cos4(x)*3sin(x)dx If you 
integral confusion
integral of Sec[2x]Tan[2x] i know u is sec 2x du=2sec2xtan2x dx what would i have to multiply with du so it would equal tan 2x dx? if my question is confusing, then here's another example of what i'm talking about: integral of