Geometry

Points D, E, and F are the midpoints of sides \overline{BC}, \overline{CA}, and \overline{AB} of \triangle ABC, respectively, and \overline{CZ} is an altitude of the triangle. If \angle BAC = 71^\circ, \angle ABC = 39^\circ, and \angle BCA = 70^\circ, then what is \angle EZD+\angle EFD in degrees?

1. angle EFD is 70

posted by Anonymous

Similar Questions

1. geometry

Points D, E, and F are the midpoints of sides \overline{BC}, \overline{CA}, and \overline{AB} of \triangle ABC, respectively, and \overline{CZ} is an altitude of the triangle. If \angle BAC = 71^\circ, \angle ABC = 39^\circ, and
2. geometry

Points D, E, and F are the midpoints of sides \overline{BC}, \overline{CA}, and \overline{AB} of \triangle ABC, respectively, and \overline{CZ} is an altitude of the triangle. If \angle BAC = 71^\circ, \angle ABC = 39^\circ, and

Triangle $ABC$ is a right triangle with right angle at $A$. Suppose $\overline{AX}$ is an altitude of the triangle, $\overline{AY}$ is an angle bisector of the triangle, and $\overline{AZ}$ is a median of the triangle, and $\angle 4. math Points$D$,$E$, and$F$are the midpoints of sides$\overline{BC}$,$\overline{CA}$, and$\overline{AB}$, respectively, of$\triangle ABC$. Points$X$,$Y$, and$Z$are the midpoints of$\overline{EF}$,$\overline{FD}$, and 5. math Points$D$,$E$, and$F$are the midpoints of sides$\overline{BC}$,$\overline{CA}$, and$\overline{AB}$, respectively, of$\triangle ABC$. Points$X$,$Y$, and$Z$are the midpoints of$\overline{EF}$,$\overline{FD}$, and 6. Geometry In$\triangle ABC$, we have$AB = AC = 13$and$BC = 10$. Let$M$be the midpoint of$\overline{AB}$and$N$be on$\overline{BC}$such that$\overline{AN}$is an altitude of$\triangle ABC$. If$\overline{AN}$and$\overline{CM}$7. geometry Points$F$,$E$, and$D$are on the sides$\overline{AB}$,$\overline{AC}$, and$\overline{BC}$, respectively, of right$\triangle ABC$such that$AFDE$is a square. If$AB = 12$and$AC = 8$, then what is$AF$? 8. Math In trapezoid$ABCD$,$\overline{BC} \parallel \overline{AD}$,$\angle ABD = 105^\circ$,$\angle A = 43^\circ$, and$\angle C = 141^\circ$. Find$\angle CBD$, in degrees. 9. Geometry Altitudes$\overline{XD}$and$\overline{YE}$of acute triangle$\triangle XYZ$intersect at point$H$. If the altitudes intersect at a$123^\circ$angle, and$\angle YXH = 26^\circ$, then what is$\angle HZX$in degrees? 10. Geometry Altitudes$\overline{XD}$and$\overline{YE}$of acute triangle$\triangle XYZ$intersect at point$H$. If the altitudes intersect at a$123^\circ$angle, and$\angle YXH = 26^\circ$, then what is$\angle HZX\$ in degrees?

More Similar Questions