math
 👍
 👎
 👁
Respond to this Question
Similar Questions

Calculus check
The functions f and g are given by f(x)=sqrt(x^3) and g(x)=162x. Let R be the region bounded by the xaxis and the graphs of f and g. A. Find the area of R. B. The region R from x=0 to x=4 is rotated about the line x=4. Write,

calculus
1.Evaluate the integral. (Use C for the constant of integration.) integral ln(sqrtx)dx 2. Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the curves about the given axis. y =

calculus integrals
Evaluate the integral by making the given substitution. (Use C for the constant of integration. Remember to use absolute values where appropriate.) integral x^5/x^65 dx, u = x6 − 5 I got the answer 1/6ln(x^65)+C but it was

Calculus
1. Express the given integral as the limit of a Riemann sum but do not evaluate: integral[0 to 3]((x^3  6x)dx) 2.Use the Fundamental Theorem to evaluate integral[0 to 3]((x^3  6x)dx).(Your answer must include the

mathematical physics
Using Green's Theorem evaluate the integral ∮c(xydx + x^2y^2 dy) where C is the triangle with vertices (0 ,0), (1, 0) and (1, 2).

math
integrals evaluate the definite integral from 1 to 9 of ((x1) / (sqrt x)) dx ? Would this one be a u sub? evaluate the integral from 0 to 10 of abs value (x5) dx? I think this one would be split but not sure how or why?

math
Evaluate the following indefinite integral by using the given substitution to reduce the integral to standard form integral 2(2x+6)^5 dx, u=2x+6

Calculus
Please help! ASAP 1. If the integral from 1 to 6 of f of x, dx equals negative 10 and the integral from 3 to 6 of f of x, dx equals negative 8, then what is the value of integral from 1 to 3 of f of x, dx? A. 2 B. 2 C. 18 D. 12

Math (Definite Integrals)
Sketch the region given by the definite integral. Use geometric shapes and formulas to evaluate the integral (a > 0, r > 0). r ∫ sqrt(r^2  x^2) dx r While I recognize that this looks similar to a circle function, I'm not sure

math
Use Green's Theorem to evaluate the line integral along the given positively oriented curve. integral of xy2 dx + 4x2y dy C is the triangle with vertices (0, 0), (2, 2), and (2, 4)

Calculus (Jacobian question)
Evaluate double integral ln((xy)/(x+y)) dy dx where the double integral region is the triangle with vertices (1,0),(4,3), (4,1). Hint: use a transformation with the Jacobian.

Math
(i) Evaluate integral [ x^3 / (x^2 + 4)^2 ] using trigonometric substitution. (ii) Evaluate integral [ x^3 / (x^2 + 4)^2 ] using regular substitution. (iii) Use a right triangle to check that indeed both answers you obtained in
You can view more similar questions or ask a new question.