Math please help!

Find lim as x approaches 0 of (e^x-1-x/2-x^3/6)/(x4)

asked by Sarah
  1. I cannot tell what exponents are present. I am guessing the denominator is x^4, so our form is something/zero which is infinity.

    posted by bobpursley

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    Let f be a function defined for all real numbers. Which of the following statements must be true about f? Which might be true? Which must be false? Justify your answers. (a) lim of f(x) as x approaches a = f(a) (b) If the lim of
  2. calculus

    Help - I have three problems that I am stuck on - 1. Lim x approaches infinity (x-3/x squared + 4) 2. Lim x approaches 3 x cubed - x squared - 7 x +3/ x squared - 9 3. Lim x approaches negative infinity (x + square root x squared
  3. Math

    If f(x) = (x+1)/(x-1), what is: i) lim f(x) as x approaches 1 ii) lim f(x) as x approaches ∞ My answer: i) lim f(x) as x approaches 1 is undefined because 2/0 is undefined ii) lim f(x) as x approaches ∞ = ∞ (∞+1)/( ∞-1)
  4. Calculus

    Find the limit lim as x approaches (pi/2) e^(tanx) I have the answer to be zero: t = tanx lim as t approaches negative infi e^t = 0 Why is tan (pi/2) approaching negative infinity is my question?
  5. calculus again

    Suppose lim x->0 {g(x)-g(0)} / x = 1. It follows necesarily that a. g is not defined at x=0 b. the limit of g(x) as x approaches equals 1 c.g is not continuous at x=0 d.g'(0) = 1 The answer is d, can someone please explain how?
  6. calculus

    hi! just needed help on an FRQ for ap calculus ab. let me know if you have any questions for me. I'm just really confused as far as what I am meant to do. If you could walk me through it that would be amazing. THANKS!! A
  7. math

    Let h be defined by h(x)=f(x)*g(x) x less than or equal to 1 h(x)=k+x if x > 1 If lim as x approaches 1 f(x)=2 and lim as x approaches 1 g(x)=-2 then for what value of k is h continous? A. -5 B. -4 C. -2 D. 2
  8. Calculus

    Show that limit as n approaches infinity of (1+x/n)^n=e^x for any x>0... Should i use the formula e= lim as x->0 (1+x)^(1/x) or e= lim as x->infinity (1+1/n)^n Am i able to substitute in x/n for x? and then say that e lim
  9. Calculus

    Show that limit as n approaches infinity of (1+x/n)^n=e^x for any x>0... Should i use the formula e= lim as x->0 (1+x)^(1/x) or e= lim as x->infinity (1+1/n)^n Am i able to substitute in x/n for x? and then say that e lim
  10. Calc: Limits

    how to calculate the limit: *I got confused especially with the square root. 1. lim as x approaches 2 (squareroot x^2 +5)-3 / (x-2) 2. lim as θ (theta) approaches zero (tan^2 (5θ) / (sin (3θ) sin (2θ) )
  11. Calculus

    Note that pi lim arctan(x ) = ---- x -> +oo 2 Now evaluate / pi \ lim |arctan(x ) - -----| x x -> +oo \ 2 / I'm not exactly sure how to attempt it. I have tried h'opital's rule but I don't believe you can use it here. Any

More Similar Questions