CALCULUS
 👍
 👎
 👁
 ℹ️
 🚩

 👍
 👎
 ℹ️
 🚩
Respond to this Question
Similar Questions

Calculus
A base of a solid is the region bounded by y=e^x, the x axis, the y axis, and the line x=2. Each cross section perpendicular to the xaxis is a square Find the volume of the solid

calculus
let R be the region bounded by the xaxis, the graph of y=sqrt(x+1), and the line x=3. Find the area of the region R

calculus
The region bounded by the given curves is rotated about the specified axis. Find the volume V of the resulting solid by any method. y = −x2 + 7x − 12, y = 0; about the xaxis

mathematics
find the volume of the solid of revolution generated when the region bounded by the curve y =x^2,the xaxis, and the lines x = 1 and x = 2 is revolved about the xaxis.

Calculus
1. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line x = 6. y = x, y = 0, y = 5, x = 6 2. Use the method of cylindrical shells to find the volume V generated by

Calculus 2
The region bounded by the given curves is rotated about the specified axis. Find the volume of the resulting solid by any method. y2 − x2 = 4, y = 3; about the xaxis

Calculus
a) Find the volume formed by rotating the region enclosed by x = 6y and y^3 = x with y greater than, equal to 0 about the yaxis. b) Find the volume of the solid obtained by rotating the region bounded by y = 4x^2, x = 1, and y =

calculus
The base of a solid is the region in the first quadrant bounded by the graph of y = 3/(e^x) , the xaxis, the yaxis, and the line x=2. Each cross section of this solid perpendicular to the xaxis is a square. What is the volume

calculus
1. Find the volume V obtained by rotating the region bounded by the curves about the given axis. y = sin(x), y = 0, π/2 ≤ x ≤ π; about the x−axis 2. Find the volume V obtained by rotating the region bounded by the curves

Calculus Help!!
Region R is bounded by the functions f(x) = 2(x4) + pi, g(x) = cos^1(x/2  3), and the x axis. a. What is the area of the region R? b. Find the volume of the solid generated when region R is rotated about the x axis. c. Find all

calculus
Find the volume of the solid generated by revolving the region about the given line. The region in the second quadrant bounded above by the curve y = 16  x2, below by the xaxis, and on the right by the yaxis, about the line x =

AP Calculus
Let R be the region bounded by the xaxis and the graph of y=6xx^2 Find the volume of the solid generated when R is revolved around the yaxis