# CALCULUS

The region R is bounded by the x-axis, y-axis, x = 3 and y = 1/(sqrt(x+1))

A. Find the area of region R.
B. Find the volume of the solid formed when the region R is revolved about the x-axis.
C. The solid formed in part B is divided into two solids of equal volume by a plane perpendicular to the
x-axis. Find the x-value where this plane intersects the x-axis.

1. 👍
2. 👎
3. 👁
1. A.
∫[0,3] 1/√(x+1) dx
= 2√(x+1) [0,3]
= 2

B. using discs, v=∫πy^2 dx
= π∫[0,3] 1/(x+1) dx
= πlog(x+1) [0,3]
= πlog4

C. We want c where
π∫[0,c] 1/(x+1) dx = π∫[c,3] 1/(x+1) dx
log(c+1)-log(0+1) = log(3+1)-log(c+1)
2log(c+1) = log(4)
log(c+1) = log(2) (and not because 4/2=2)
c = 1

1. 👍
2. 👎

## Similar Questions

1. ### calculus

let R be the region bounded by the x-axis, the graph of y=sqrt(x+1), and the line x=3. Find the area of the region R

2. ### Calculus

A base of a solid is the region bounded by y=e^-x, the x axis, the y axis, and the line x=2. Each cross section perpendicular to the x-axis is a square Find the volume of the solid

3. ### calculus

The base of a solid is the region in the first quadrant bounded by the graph of y = 3/(e^x) , the x-axis, the y-axis, and the line x=2. Each cross section of this solid perpendicular to the x-axis is a square. What is the volume

4. ### calculus

Find the volume of the solid generated by revolving the region about the given line. The region in the second quadrant bounded above by the curve y = 16 - x2, below by the x-axis, and on the right by the y-axis, about the line x =

1. ### Calculus

The base of a solid is bounded by the curve y=sqrt(x+1) , the x-axis and the line x = 1. The cross sections, taken perpendicular to the x-axis, are squares. Find the volume of the solid a. 1 b. 2 c. 2.333 d. none of the above I

2. ### Calculus Help!!

Region R is bounded by the functions f(x) = 2(x-4) + pi, g(x) = cos^-1(x/2 - 3), and the x axis. a. What is the area of the region R? b. Find the volume of the solid generated when region R is rotated about the x axis. c. Find all

3. ### calculus

the base of a solid is a region in the first quadrant bounded by the x-axis, the y-axis, and the line y=1-x. if cross sections of the solid perpendicular to the x-axis are semicircles, what is the volume of the solid?

4. ### Calculus

a) Find the volume formed by rotating the region enclosed by x = 6y and y^3 = x with y greater than, equal to 0 about the y-axis. b) Find the volume of the solid obtained by rotating the region bounded by y = 4x^2, x = 1, and y =

1. ### Calculus

Which of the following integrals correctly computes the volume formed when the region bounded by the curves x^2 + y^2 = 100, x = 6, and y = 0 is rotated around the y-axis? I've narrowed it down to either pi∫(sqrt(100-y^2)-6)^2

2. ### Calculus

5. Find the volume of the solid generated by revolving the region bounded by y = x2, y = 0 and x = 1 about (a) the x-axis (b) the y-axis

3. ### AP Calculus

Let R be the region bounded by the x-axis and the graph of y=6x-x^2 Find the volume of the solid generated when R is revolved around the y-axis

4. ### calculus

The region bounded by the given curves is rotated about the specified axis. Find the volume V of the resulting solid by any method. y = −x2 + 7x − 12, y = 0; about the x-axis