# calculus help please

A piece of wire 14 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle.
(a) How much wire should be used for the square in order to maximize the total area?

= 14 m

(b) How much wire should be used for the square in order to minimize the total area?

= ????

1. 👍 0
2. 👎 0
3. 👁 374
1. let each side of the square be x m
let each side of the equilateral triangle be 2x
(that way, the height is √3y, from the ratio of the 30-60-90° triangle)

a) for a max area, you are right, all should be used for the square

b) 4x + 6y = 14
2x + 3y = 7
x = (7-3y)/4 OR y = (7-2x)/3

area = x^2 + (1/2)(2y)(√3y)
= x^2 + √3 y^2
= x^2 + √3 ((7-2x)/3)^2

= x^2 + (√3/9)(49 - 28x + 4x^2)
d(area)/dx = 2x + (√3/9)(-28 + 8x) = 0 for a max of area

2x = √3/9(28 - 8x)
18x = 28√3 - 8√3x
x(18 + 8√3) = 28√3
x = 28√3/(18+8√3) = appr 1.522

need 4 x's for the square, so 6.09 m for the square, leaving 7.9 m for the triangle for a minimum total area.

check my arithmetic, should have written it out first.

1. 👍 0
2. 👎 0

## Similar Questions

1. ### Calculus Help Please Urgent!!!

A piece of wire 14 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. (a) How much wire should be used for the square in order to maximize the total area? 14 m this

2. ### HELLP!! calculus

A piece of wire 25 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle. (a) How much of the wire should go to the square to maximize the total area enclosed by both figures? (b) how

3. ### Calculus!!!

A piece of wire 28 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle. (a) How much wire should be used for the square in order to maximize the total area? (b) How much wire should

4. ### Calculus

A piece of wire 40cm long is cut into two pieces. One piece is bent into the shape of a square and the other is bent into the shape of a circle. How should the wire be cut so that the total area enclosed is a) a maximum? /b) a

1. ### calculus

A piece of wire 18 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle. (a) How much wire should be used for the square in order to maximize the total area?

2. ### Calculus

a piece of wire 12 ft. long is cut into two pieces. one piece is made into a circle and the other piece is made into a square. Let the piece of length x be formed into a circle. allow x to equal 0 or 12, so all the wire is used

3. ### Calculus

A wire 60 cm long is to be cut into two pieces. One of the pieces will be bent into the shape of a square and the other into the shape of an equilateral triangle, as shown in the diagram below: a diagram showing a 60 cm wire cut

4. ### Calculus 1

A piece of wire 23 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. (a) How much wire should be used for the square in order to maximize the total area? (b) How

1. ### Calculus

A wire 7 meters long is cut into two pieces. One piece is bent into a square for a frame for a stained glass ornament, while the other piece is bent into a circle for a TV antenna. To reduce storage space, where should the wire be

2. ### Calculus

A piece of wire 24 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle. (Give your answers correct to two decimal places.) (a) How much wire should be used for the circle in order to

3. ### Math

A 14 inch board is to be cut into 3 pieces so that the second piece is twice as long as the first piece and the third piece is 4 times as long as the first piece. If x represents the length of the first piece find the lengths of

4. ### Calculus

A piece of wire 15 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle.