The surface density of a thin rectangle varies as:

σ(x,y)= 14.0 kg/m2 + 9.00 kg/m4(x2+y2)
The rectangle has a length L = 0.500 m and a width W = 1.500 m. Calculate Iz, the moment of inertia about the z-axis.

To calculate the moment of inertia about the z-axis (Iz), we can use the formula for the moment of inertia of a surface density, which is given by:

Iz = ∬ r^2 * σ(x, y) dA

Here, r is the perpendicular distance from the z-axis to each infinitesimal area element dA.
Since the given surface density varies as a function of x and y, we need to integrate over the entire area of the rectangle to calculate the moment of inertia.

First, let's find the equation for r^2 in terms of x and y.

Since the rectangle has a length L = 0.500 m and a width W = 1.500 m, the coordinates of its corner points are:
(±L/2, ±W/2)

So, r^2 = x^2 + y^2

Now, let's substitute the given surface density equation into the formula for Iz:

Iz = ∬ (x^2 + y^2) * (14.0 kg/m^2 + 9.00 kg/m^4(x^2 + y^2)) dA

Before continuing, let's simplify the equation. Note that we can factor out the constant term to make the integration more manageable:

Iz = 14.0 kg/m^2 ∬ (x^2 + y^2) dA + 9.00 kg/m^4 ∬ (x^2 + y^2)^2 dA

Now, let's calculate the two integrals separately.

1. ∬ (x^2 + y^2) dA:
Since this part of the integral does not depend on x and y, we can factor it out:

∬ (x^2 + y^2) dA = (x^2 + y^2) ∬ dA

The integral ∬ dA represents the area of the rectangle, which is simply L * W:

∬ (x^2 + y^2) dA = (x^2 + y^2) * (L * W)

Substituting the values, we get:

∬ (x^2 + y^2) dA = (x^2 + y^2) * (0.500 m * 1.500 m)

2. ∬ (x^2 + y^2)^2 dA:
Similarly, we can factor out the constant term and calculate the inner integral:

∬ (x^2 + y^2)^2 dA = (x^2 + y^2)^2 ∬ dA

∬ (x^2 + y^2)^2 dA = (x^2 + y^2)^2 * (L * W)

Substituting the values, we get:

∬ (x^2 + y^2)^2 dA = (x^2 + y^2)^2 * (0.500 m * 1.500 m)

Finally, substitute these values back into the original equation for Iz:

Iz = 14.0 kg/m^2 * [(x^2 + y^2) * (0.500 m * 1.500 m)] + 9.00 kg/m^4 * [(x^2 + y^2)^2 * (0.500 m * 1.500 m)]

Evaluate this equation using the given values for x and y in the given range to find the moment of inertia about the z-axis (Iz).

To calculate the moment of inertia about the z-axis (Iz) for the given thin rectangle:

1. Divide the rectangle into small areas (dA) and integrate over the whole area to find the moment of inertia.
Iz = ∫∫(r^2) dA

2. Express the density function in terms of x and y coordinates:
σ(x,y) = 14.0 kg/m^2 + 9.00 kg/m^4(x^2 + y^2)

3. Rewrite the above equation to express the mass per unit area (σ) as a function of x and y:
σ(x,y) = 14.0 kg/m^2 + 9.00 kg/m^4 * (x^2 + y^2)

4. Express the mass per unit area (σ) as a function of x and y:
σ(x,y) = 14.0 + 9.00 * (x^2 + y^2) kg/m^2

5. Calculate the small area (dA) of each small rectangle:
dA = L * W

6. Substituting the values of L and W into the equation:
dA = 0.500 m * 1.500 m = 0.750 m^2

7. Substitute the density function (σ) and small area (dA) into the moment of inertia equation:
Iz = ∫∫(r^2) dA = ∫∫(σ(x,y) * r^2) dA

8. Integrate the equation with respect to x and y over the given dimensions of the rectangle (0 to L and 0 to W):
Iz = ∫∫(σ(x,y) * (x^2 + y^2)) dA

9. Substitute the expressions for σ(x,y) and dA into the equation:
Iz = (14.0 + 9.00 * (x^2 + y^2)) * (x^2 + y^2) * 0.750

10. Integrate the above equation over the limits 0 to L for x and 0 to W for y:
Iz = ∫(0 to L) ∫(0 to W) (14.0 + 9.00 * (x^2 + y^2)) * (x^2 + y^2) * 0.750 dy dx

11. Calculate the double integral to find the value of Iz.